Spaces:
Sleeping
Sleeping
from fastapi import APIRouter | |
from datetime import datetime | |
from datasets import load_dataset | |
from sklearn.metrics import accuracy_score | |
import random | |
import os | |
import librosa | |
import joblib | |
import numpy as np | |
import lightgbm | |
from .utils.evaluation import AudioEvaluationRequest | |
from .utils.emissions import tracker, clean_emissions_data, get_space_info | |
from dotenv import load_dotenv | |
load_dotenv() | |
router = APIRouter() | |
DESCRIPTION = "Random Baseline" | |
ROUTE = "/audio" | |
async def evaluate_audio(request: AudioEvaluationRequest): | |
""" | |
Evaluate audio classification for rainforest sound detection. | |
Current Model: Random Baseline | |
- Makes random predictions from the label space (0-1) | |
- Used as a baseline for comparison | |
""" | |
# Get space info | |
username, space_url = get_space_info() | |
# Define the label mapping | |
LABEL_MAPPING = { | |
"chainsaw": 0, | |
"environment": 1 | |
} | |
# Load and prepare the dataset | |
# Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate | |
dataset = load_dataset(request.dataset_name,token=os.getenv("HF_TOKEN")) | |
# Split dataset | |
train_test = dataset["train"] | |
test_dataset = dataset["test"] | |
# Start tracking emissions | |
tracker.start() | |
tracker.start_task("inference") | |
#-------------------------------------------------------------------------------------------- | |
# YOUR MODEL INFERENCE CODE HERE | |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked. | |
#-------------------------------------------------------------------------------------------- | |
def preprocess_data(row, sr): | |
new_row = librosa.resample(row['audio']['array'], orig_sr=row['audio']['sampling_rate'], target_sr=sr) | |
new_row = np.pad(new_row, (0, 3 * sr - len(new_row)), 'constant') | |
new_row = librosa.feature.mfcc(y=new_row, sr=sr, n_mfcc=10) | |
return new_row.flatten() | |
test_list_mfcc = np.vstack([preprocess_data(row, 12000) for row in test_dataset]) | |
model_filename = "lightgbm_10_mfcc.pkl" | |
clf = joblib.load(model_filename) | |
true_labels = test_dataset["label"] | |
predictions = clf.predict(test_list_mfcc) | |
#-------------------------------------------------------------------------------------------- | |
# YOUR MODEL INFERENCE STOPS HERE | |
#-------------------------------------------------------------------------------------------- | |
# Stop tracking emissions | |
emissions_data = tracker.stop_task() | |
# Calculate accuracy | |
accuracy = accuracy_score(true_labels, predictions) | |
# Prepare results dictionary | |
results = { | |
"username": username, | |
"space_url": space_url, | |
"submission_timestamp": datetime.now().isoformat(), | |
"model_description": DESCRIPTION, | |
"accuracy": float(accuracy), | |
"energy_consumed_wh": emissions_data.energy_consumed * 1000, | |
"emissions_gco2eq": emissions_data.emissions * 1000, | |
"emissions_data": clean_emissions_data(emissions_data), | |
"api_route": ROUTE, | |
"dataset_config": { | |
"dataset_name": request.dataset_name, | |
"test_size": request.test_size, | |
"test_seed": request.test_seed | |
} | |
} | |
return results |