Spaces:
Build error
Build error
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import numpy as np | |
import numpy.random as npr | |
import copy | |
from functools import partial | |
from contextlib import contextmanager | |
from lib.model_zoo.common.get_model import get_model, register | |
from lib.log_service import print_log | |
version = '0' | |
symbol = 'sd' | |
from .diffusion_utils import \ | |
count_params, extract_into_tensor, make_beta_schedule | |
from .distributions import normal_kl, DiagonalGaussianDistribution | |
from .ema import LitEma | |
def highlight_print(info): | |
print_log('') | |
print_log(''.join(['#']*(len(info)+4))) | |
print_log('# '+info+' #') | |
print_log(''.join(['#']*(len(info)+4))) | |
print_log('') | |
class DDPM(nn.Module): | |
def __init__(self, | |
unet_config, | |
timesteps=1000, | |
use_ema=True, | |
beta_schedule="linear", | |
beta_linear_start=1e-4, | |
beta_linear_end=2e-2, | |
loss_type="l2", | |
clip_denoised=True, | |
cosine_s=8e-3, | |
given_betas=None, | |
l_simple_weight=1., | |
original_elbo_weight=0., | |
v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta | |
parameterization="eps", | |
use_positional_encodings=False, | |
learn_logvar=False, | |
logvar_init=0, ): | |
super().__init__() | |
assert parameterization in ["eps", "x0"], \ | |
'currently only supporting "eps" and "x0"' | |
self.parameterization = parameterization | |
highlight_print("Running in {} mode".format(self.parameterization)) | |
self.cond_stage_model = None | |
self.clip_denoised = clip_denoised | |
self.use_positional_encodings = use_positional_encodings | |
from collections import OrderedDict | |
self.model = nn.Sequential(OrderedDict([('diffusion_model', get_model()(unet_config))])) | |
# TODO: Remove this ugly trick to match SD with deprecated version, after no bug with the module. | |
self.use_ema = use_ema | |
if self.use_ema: | |
self.model_ema = LitEma(self.model) | |
print_log(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") | |
self.v_posterior = v_posterior | |
self.l_simple_weight = l_simple_weight | |
self.original_elbo_weight = original_elbo_weight | |
self.register_schedule( | |
given_betas=given_betas, | |
beta_schedule=beta_schedule, | |
timesteps=timesteps, | |
linear_start=beta_linear_start, | |
linear_end=beta_linear_end, | |
cosine_s=cosine_s) | |
self.loss_type = loss_type | |
self.learn_logvar = learn_logvar | |
self.logvar = torch.full( | |
fill_value=logvar_init, size=(self.num_timesteps,)) | |
if self.learn_logvar: | |
self.logvar = nn.Parameter(self.logvar, requires_grad=True) | |
def register_schedule(self, | |
given_betas=None, | |
beta_schedule="linear", | |
timesteps=1000, | |
linear_start=1e-4, | |
linear_end=2e-2, | |
cosine_s=8e-3): | |
if given_betas is not None: | |
betas = given_betas | |
else: | |
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, | |
cosine_s=cosine_s) | |
alphas = 1. - betas | |
alphas_cumprod = np.cumprod(alphas, axis=0) | |
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) | |
timesteps, = betas.shape | |
self.num_timesteps = int(timesteps) | |
self.linear_start = linear_start | |
self.linear_end = linear_end | |
assert alphas_cumprod.shape[0] == self.num_timesteps, \ | |
'alphas have to be defined for each timestep' | |
to_torch = partial(torch.tensor, dtype=torch.float32) | |
self.register_buffer('betas', to_torch(betas)) | |
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) | |
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev)) | |
# calculations for diffusion q(x_t | x_{t-1}) and others | |
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) | |
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) | |
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod))) | |
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod))) | |
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1))) | |
# calculations for posterior q(x_{t-1} | x_t, x_0) | |
posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / ( | |
1. - alphas_cumprod) + self.v_posterior * betas | |
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t) | |
self.register_buffer('posterior_variance', to_torch(posterior_variance)) | |
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain | |
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20)))) | |
self.register_buffer('posterior_mean_coef1', to_torch( | |
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))) | |
self.register_buffer('posterior_mean_coef2', to_torch( | |
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod))) | |
if self.parameterization == "eps": | |
lvlb_weights = self.betas ** 2 / ( | |
2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod)) | |
elif self.parameterization == "x0": | |
lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod)) | |
else: | |
raise NotImplementedError("mu not supported") | |
# TODO how to choose this term | |
lvlb_weights[0] = lvlb_weights[1] | |
self.register_buffer('lvlb_weights', lvlb_weights, persistent=False) | |
assert not torch.isnan(self.lvlb_weights).all() | |
def ema_scope(self, context=None): | |
if self.use_ema: | |
self.model_ema.store(self.model.parameters()) | |
self.model_ema.copy_to(self.model) | |
if context is not None: | |
print_log(f"{context}: Switched to EMA weights") | |
try: | |
yield None | |
finally: | |
if self.use_ema: | |
self.model_ema.restore(self.model.parameters()) | |
if context is not None: | |
print_log(f"{context}: Restored training weights") | |
def q_mean_variance(self, x_start, t): | |
""" | |
Get the distribution q(x_t | x_0). | |
:param x_start: the [N x C x ...] tensor of noiseless inputs. | |
:param t: the number of diffusion steps (minus 1). Here, 0 means one step. | |
:return: A tuple (mean, variance, log_variance), all of x_start's shape. | |
""" | |
mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start) | |
variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) | |
log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape) | |
return mean, variance, log_variance | |
def predict_start_from_noise(self, x_t, t, noise): | |
value1 = extract_into_tensor( | |
self.sqrt_recip_alphas_cumprod, t, x_t.shape) | |
value2 = extract_into_tensor( | |
self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) | |
return value1*x_t -value2*noise | |
def q_posterior(self, x_start, x_t, t): | |
posterior_mean = ( | |
extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start + | |
extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t | |
) | |
posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape) | |
posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape) | |
return posterior_mean, posterior_variance, posterior_log_variance_clipped | |
def p_mean_variance(self, x, t, clip_denoised: bool): | |
model_out = self.model(x, t) | |
if self.parameterization == "eps": | |
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) | |
elif self.parameterization == "x0": | |
x_recon = model_out | |
if clip_denoised: | |
x_recon.clamp_(-1., 1.) | |
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) | |
return model_mean, posterior_variance, posterior_log_variance | |
def p_sample(self, x, t, clip_denoised=True, repeat_noise=False): | |
b, *_, device = *x.shape, x.device | |
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised) | |
noise = noise_like(x.shape, device, repeat_noise) | |
# no noise when t == 0 | |
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) | |
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise | |
def p_sample_loop(self, shape, return_intermediates=False): | |
device = self.betas.device | |
b = shape[0] | |
img = torch.randn(shape, device=device) | |
intermediates = [img] | |
for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps): | |
img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long), | |
clip_denoised=self.clip_denoised) | |
if i % self.log_every_t == 0 or i == self.num_timesteps - 1: | |
intermediates.append(img) | |
if return_intermediates: | |
return img, intermediates | |
return img | |
def sample(self, batch_size=16, return_intermediates=False): | |
image_size = self.image_size | |
channels = self.channels | |
return self.p_sample_loop((batch_size, channels, image_size, image_size), | |
return_intermediates=return_intermediates) | |
def q_sample(self, x_start, t, noise=None): | |
noise = torch.randn_like(x_start) if noise is None else noise | |
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + | |
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise) | |
def get_loss(self, pred, target, mean=True): | |
if self.loss_type == 'l1': | |
loss = (target - pred).abs() | |
if mean: | |
loss = loss.mean() | |
elif self.loss_type == 'l2': | |
if mean: | |
loss = torch.nn.functional.mse_loss(target, pred) | |
else: | |
loss = torch.nn.functional.mse_loss(target, pred, reduction='none') | |
else: | |
raise NotImplementedError("unknown loss type '{loss_type}'") | |
return loss | |
def p_losses(self, x_start, t, noise=None): | |
noise = default(noise, lambda: torch.randn_like(x_start)) | |
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) | |
model_out = self.model(x_noisy, t) | |
loss_dict = {} | |
if self.parameterization == "eps": | |
target = noise | |
elif self.parameterization == "x0": | |
target = x_start | |
else: | |
raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported") | |
loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3]) | |
log_prefix = 'train' if self.training else 'val' | |
loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()}) | |
loss_simple = loss.mean() * self.l_simple_weight | |
loss_vlb = (self.lvlb_weights[t] * loss).mean() | |
loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb}) | |
loss = loss_simple + self.original_elbo_weight * loss_vlb | |
loss_dict.update({f'{log_prefix}/loss': loss}) | |
return loss, loss_dict | |
def forward(self, x, *args, **kwargs): | |
# b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size | |
# assert h == img_size and w == img_size, f'height and width of image must be {img_size}' | |
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long() | |
return self.p_losses(x, t, *args, **kwargs) | |
def on_train_batch_end(self, *args, **kwargs): | |
if self.use_ema: | |
self.model_ema(self.model) | |
class SD_T2I(DDPM): | |
def __init__(self, | |
first_stage_config, | |
cond_stage_config, | |
num_timesteps_cond=None, | |
cond_stage_trainable=False, | |
scale_factor=1.0, | |
scale_by_std=False, | |
*args, | |
**kwargs): | |
self.num_timesteps_cond = num_timesteps_cond \ | |
if num_timesteps_cond is not None else 1 | |
self.scale_by_std = scale_by_std | |
assert self.num_timesteps_cond <= kwargs['timesteps'] | |
super().__init__(*args, **kwargs) | |
self.first_stage_model = get_model()(first_stage_config) | |
self.cond_stage_model = get_model()(cond_stage_config) | |
self.concat_mode = 'crossattn' | |
self.cond_stage_trainable = cond_stage_trainable | |
if not scale_by_std: | |
self.scale_factor = scale_factor | |
else: | |
self.register_buffer('scale_factor', torch.tensor(scale_factor)) | |
self.device = 'cpu' | |
def to(self, device): | |
self.device = device | |
super().to(device) | |
def on_train_batch_start(self, x): | |
# only for very first batch | |
if self.scale_by_std: | |
assert self.scale_factor == 1., \ | |
'rather not use custom rescaling and std-rescaling simultaneously' | |
# set rescale weight to 1./std of encodings | |
encoder_posterior = self.encode_first_stage(x) | |
z = self.get_first_stage_encoding(encoder_posterior).detach() | |
del self.scale_factor | |
self.register_buffer('scale_factor', 1. / z.flatten().std()) | |
highlight_print("setting self.scale_factor to {}".format(self.scale_factor)) | |
def register_schedule(self, | |
given_betas=None, beta_schedule="linear", timesteps=1000, | |
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): | |
super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s) | |
self.shorten_cond_schedule = self.num_timesteps_cond > 1 | |
if self.shorten_cond_schedule: | |
self.make_cond_schedule() | |
def make_cond_schedule(self, ): | |
self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long) | |
ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long() | |
self.cond_ids[:self.num_timesteps_cond] = ids | |
def encode_image(self, im): | |
encoder_posterior = self.first_stage_model.encode(im) | |
z = self.get_first_stage_encoding(encoder_posterior).detach() | |
return z | |
def get_first_stage_encoding(self, encoder_posterior): | |
if isinstance(encoder_posterior, DiagonalGaussianDistribution): | |
z = encoder_posterior.sample() | |
elif isinstance(encoder_posterior, torch.Tensor): | |
z = encoder_posterior | |
else: | |
raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented") | |
return self.scale_factor * z | |
def decode_image(self, z, predict_cids=False, force_not_quantize=False): | |
z = 1. / self.scale_factor * z | |
return self.first_stage_model.decode(z) | |
def encode_text(self, text): | |
return self.get_learned_conditioning(text) | |
def get_learned_conditioning(self, c): | |
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode): | |
c = self.cond_stage_model.encode(c) | |
if isinstance(c, DiagonalGaussianDistribution): | |
c = c.mode() | |
else: | |
c = self.cond_stage_model(c) | |
return c | |
def forward(self, x, c, noise=None): | |
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=x.device).long() | |
if self.cond_stage_trainable: | |
c = self.get_learned_conditioning(c) | |
return self.p_losses(x, c, t, noise) | |
def apply_model(self, x_noisy, t, cond): | |
return self.model.diffusion_model(x_noisy, t, cond) | |
def p_losses(self, x_start, cond, t, noise=None): | |
noise = torch.randn_like(x_start) if noise is None else noise | |
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) | |
model_output = self.apply_model(x_noisy, t, cond) | |
loss_dict = {} | |
prefix = 'train' if self.training else 'val' | |
if self.parameterization == "x0": | |
target = x_start | |
elif self.parameterization == "eps": | |
target = noise | |
else: | |
raise NotImplementedError() | |
loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3]) | |
loss_dict['loss_simple'] = loss_simple.mean() | |
logvar_t = self.logvar[t].to(self.device) | |
loss = loss_simple / torch.exp(logvar_t) + logvar_t | |
if self.learn_logvar: | |
loss_dict['loss_gamma'] = loss.mean() | |
loss_dict['logvar' ] = self.logvar.data.mean() | |
loss = self.l_simple_weight * loss.mean() | |
loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3)) | |
loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean() | |
loss_dict['loss_vlb'] = loss_vlb | |
loss += (self.original_elbo_weight * loss_vlb) | |
loss_dict.update({'Loss': loss}) | |
return loss, loss_dict | |
def _predict_eps_from_xstart(self, x_t, t, pred_xstart): | |
return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \ | |
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) | |
def _prior_bpd(self, x_start): | |
""" | |
Get the prior KL term for the variational lower-bound, measured in | |
bits-per-dim. | |
This term can't be optimized, as it only depends on the encoder. | |
:param x_start: the [N x C x ...] tensor of inputs. | |
:return: a batch of [N] KL values (in bits), one per batch element. | |
""" | |
batch_size = x_start.shape[0] | |
t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device) | |
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t) | |
kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0) | |
return mean_flat(kl_prior) / np.log(2.0) | |
def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False, | |
return_x0=False, score_corrector=None, corrector_kwargs=None): | |
t_in = t | |
model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids) | |
if score_corrector is not None: | |
assert self.parameterization == "eps" | |
model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs) | |
if return_codebook_ids: | |
model_out, logits = model_out | |
if self.parameterization == "eps": | |
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) | |
elif self.parameterization == "x0": | |
x_recon = model_out | |
else: | |
raise NotImplementedError() | |
if clip_denoised: | |
x_recon.clamp_(-1., 1.) | |
if quantize_denoised: | |
x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon) | |
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) | |
if return_codebook_ids: | |
return model_mean, posterior_variance, posterior_log_variance, logits | |
elif return_x0: | |
return model_mean, posterior_variance, posterior_log_variance, x_recon | |
else: | |
return model_mean, posterior_variance, posterior_log_variance | |
def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False, | |
return_codebook_ids=False, quantize_denoised=False, return_x0=False, | |
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None): | |
b, *_, device = *x.shape, x.device | |
outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised, | |
return_codebook_ids=return_codebook_ids, | |
quantize_denoised=quantize_denoised, | |
return_x0=return_x0, | |
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs) | |
if return_codebook_ids: | |
raise DeprecationWarning("Support dropped.") | |
model_mean, _, model_log_variance, logits = outputs | |
elif return_x0: | |
model_mean, _, model_log_variance, x0 = outputs | |
else: | |
model_mean, _, model_log_variance = outputs | |
noise = noise_like(x.shape, device, repeat_noise) * temperature | |
if noise_dropout > 0.: | |
noise = torch.nn.functional.dropout(noise, p=noise_dropout) | |
# no noise when t == 0 | |
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) | |
if return_codebook_ids: | |
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1) | |
if return_x0: | |
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0 | |
else: | |
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise | |
def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False, | |
img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0., | |
score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None, | |
log_every_t=None): | |
if not log_every_t: | |
log_every_t = self.log_every_t | |
timesteps = self.num_timesteps | |
if batch_size is not None: | |
b = batch_size if batch_size is not None else shape[0] | |
shape = [batch_size] + list(shape) | |
else: | |
b = batch_size = shape[0] | |
if x_T is None: | |
img = torch.randn(shape, device=self.device) | |
else: | |
img = x_T | |
intermediates = [] | |
if cond is not None: | |
if isinstance(cond, dict): | |
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else | |
list(map(lambda x: x[:batch_size], cond[key])) for key in cond} | |
else: | |
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] | |
if start_T is not None: | |
timesteps = min(timesteps, start_T) | |
iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation', | |
total=timesteps) if verbose else reversed( | |
range(0, timesteps)) | |
if type(temperature) == float: | |
temperature = [temperature] * timesteps | |
for i in iterator: | |
ts = torch.full((b,), i, device=self.device, dtype=torch.long) | |
if self.shorten_cond_schedule: | |
assert self.model.conditioning_key != 'hybrid' | |
tc = self.cond_ids[ts].to(cond.device) | |
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) | |
img, x0_partial = self.p_sample(img, cond, ts, | |
clip_denoised=self.clip_denoised, | |
quantize_denoised=quantize_denoised, return_x0=True, | |
temperature=temperature[i], noise_dropout=noise_dropout, | |
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs) | |
if mask is not None: | |
assert x0 is not None | |
img_orig = self.q_sample(x0, ts) | |
img = img_orig * mask + (1. - mask) * img | |
if i % log_every_t == 0 or i == timesteps - 1: | |
intermediates.append(x0_partial) | |
if callback: callback(i) | |
if img_callback: img_callback(img, i) | |
return img, intermediates | |
def p_sample_loop(self, cond, shape, return_intermediates=False, | |
x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False, | |
mask=None, x0=None, img_callback=None, start_T=None, | |
log_every_t=None): | |
if not log_every_t: | |
log_every_t = self.log_every_t | |
device = self.betas.device | |
b = shape[0] | |
if x_T is None: | |
img = torch.randn(shape, device=device) | |
else: | |
img = x_T | |
intermediates = [img] | |
if timesteps is None: | |
timesteps = self.num_timesteps | |
if start_T is not None: | |
timesteps = min(timesteps, start_T) | |
iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed( | |
range(0, timesteps)) | |
if mask is not None: | |
assert x0 is not None | |
assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match | |
for i in iterator: | |
ts = torch.full((b,), i, device=device, dtype=torch.long) | |
if self.shorten_cond_schedule: | |
assert self.model.conditioning_key != 'hybrid' | |
tc = self.cond_ids[ts].to(cond.device) | |
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) | |
img = self.p_sample(img, cond, ts, | |
clip_denoised=self.clip_denoised, | |
quantize_denoised=quantize_denoised) | |
if mask is not None: | |
img_orig = self.q_sample(x0, ts) | |
img = img_orig * mask + (1. - mask) * img | |
if i % log_every_t == 0 or i == timesteps - 1: | |
intermediates.append(img) | |
if callback: callback(i) | |
if img_callback: img_callback(img, i) | |
if return_intermediates: | |
return img, intermediates | |
return img | |
def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None, | |
verbose=True, timesteps=None, quantize_denoised=False, | |
mask=None, x0=None, shape=None,**kwargs): | |
if shape is None: | |
shape = (batch_size, self.channels, self.image_size, self.image_size) | |
if cond is not None: | |
if isinstance(cond, dict): | |
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else | |
list(map(lambda x: x[:batch_size], cond[key])) for key in cond} | |
else: | |
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] | |
return self.p_sample_loop(cond, | |
shape, | |
return_intermediates=return_intermediates, x_T=x_T, | |
verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised, | |
mask=mask, x0=x0) | |
class SD_T2I_SplitTransPG(SD_T2I): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.parameter_group = { | |
# 'first_stage_model' : self.first_stage_model, | |
# 'cond_stage_model' : self.cond_stage_model, | |
'transformers' : [v for n, v in self.model.named_parameters() if n.find('transformer_blocks')!=-1], | |
'other' :[v for n, v in self.model.named_parameters() if n.find('transformer_blocks')==-1], | |
} | |
class SD_Dual_CrossAttn(SD_T2I): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
def is_part_of_trans(name): | |
if name.find('.1.norm')!=-1: | |
return True | |
if name.find('.1.proj_in')!=-1: | |
return True | |
if name.find('.1.transformer_blocks')!=-1: | |
return True | |
if name.find('.1.proj_out')!=-1: | |
return True | |
return False | |
self.parameter_group = { | |
'transformers' : [v for n, v in self.model.named_parameters() if is_part_of_trans(n)], | |
'other' :[v for n, v in self.model.named_parameters() if not is_part_of_trans(n)], | |
} | |
def apply_model(self, x_noisy, t, cond, cond_type): | |
if cond_type in ['prompt', 'text']: | |
which_attn = 0 | |
elif cond_type in ['vision', 'visual', 'image']: | |
which_attn = 1 | |
elif isinstance(cond_type, float): | |
assert 0 < cond_type < 1, \ | |
'A special cond_type that will doing a random mix between two input condition, '\ | |
'rand() < cond_type is text, else visual' | |
which_attn = cond_type | |
else: | |
assert False | |
return self.model.diffusion_model(x_noisy, t, cond, which_attn=which_attn) | |
def p_losses(self, x_start, cond, t, noise=None, cond_type=None): | |
noise = torch.randn_like(x_start) if noise is None else noise | |
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) | |
model_output = self.apply_model(x_noisy, t, cond, cond_type=cond_type) | |
loss_dict = {} | |
prefix = 'train' if self.training else 'val' | |
if self.parameterization == "x0": | |
target = x_start | |
elif self.parameterization == "eps": | |
target = noise | |
else: | |
raise NotImplementedError() | |
loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3]) | |
loss_dict['loss_simple'] = loss_simple.mean() | |
logvar_t = self.logvar[t].to(self.device) | |
loss = loss_simple / torch.exp(logvar_t) + logvar_t | |
if self.learn_logvar: | |
loss_dict['loss_gamma'] = loss.mean() | |
loss_dict['logvar' ] = self.logvar.data.mean() | |
loss = self.l_simple_weight * loss.mean() | |
loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3)) | |
loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean() | |
loss_dict['loss_vlb'] = loss_vlb | |
loss += (self.original_elbo_weight * loss_vlb) | |
loss_dict.update({'Loss': loss}) | |
return loss, loss_dict | |
def clip_encode_text(self, text): | |
clip_encode_type = self.cond_stage_model.encode_type | |
self.cond_stage_model.encode_type = 'encode_text' | |
embedding = self.get_learned_conditioning(text) | |
self.cond_stage_model.encode_type = clip_encode_type | |
return embedding | |
def clip_encode_vision(self, vision, encode_type='encode_vision'): | |
clip_encode_type = self.cond_stage_model.encode_type | |
self.cond_stage_model.encode_type = encode_type | |
if isinstance(vision, torch.Tensor): | |
vision = ((vision+1)/2).to('cpu').numpy() | |
vision = np.transpose(vision, (0, 2, 3, 1)) | |
vision = [vi for vi in vision] | |
embedding = self.get_learned_conditioning(vision) | |
self.cond_stage_model.encode_type = clip_encode_type | |
return embedding | |
def get_learned_conditioning(self, c): | |
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode): | |
c = self.cond_stage_model.encode(c) | |
if isinstance(c, DiagonalGaussianDistribution): | |
c = c.mode() | |
else: | |
c = self.cond_stage_model(c) | |
return c | |
def forward(self, x, c, noise=None, cond_type=None): | |
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=x.device).long() | |
if self.cond_stage_trainable: | |
c = self.get_learned_conditioning(c) | |
return self.p_losses(x, c, t, noise, cond_type=cond_type) | |
class SD_Variation(SD_T2I): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
def is_part_of_trans(name): | |
if name.find('.1.norm')!=-1: | |
return True | |
if name.find('.1.proj_in')!=-1: | |
return True | |
if name.find('.1.transformer_blocks')!=-1: | |
return True | |
if name.find('.1.proj_out')!=-1: | |
return True | |
return False | |
self.parameter_group = { | |
'transformers' : [v for n, v in self.model.named_parameters() if is_part_of_trans(n)], | |
'other' :[v for n, v in self.model.named_parameters() if not is_part_of_trans(n)], | |
} | |
self.encode_image = None | |
self.encode_text = None | |
self._predict_eps_from_xstart = None | |
self._prior_bpd = None | |
self.p_mean_variance = None | |
self.p_sample = None | |
self.progressive_denoising = None | |
self.p_sample_loop = None | |
self.sample = None | |
def encode_input(self, im): | |
encoder_posterior = self.first_stage_model.encode(im) | |
if isinstance(encoder_posterior, DiagonalGaussianDistribution): | |
z = encoder_posterior.sample() | |
elif isinstance(encoder_posterior, torch.Tensor): | |
z = encoder_posterior | |
else: | |
raise NotImplementedError("Encoder_posterior of type '{}' not yet implemented".format(type(encoder_posterior))) | |
return z * self.scale_factor | |
def decode_latent(self, z): | |
z = 1. / self.scale_factor * z | |
return self.first_stage_model.decode(z) | |
def clip_encode_vision(self, vision): | |
if isinstance(vision, list): | |
if not isinstance(vision[0], torch.Tensor): | |
import torchvision.transforms as tvtrans | |
vision = [tvtrans.ToTensor()(i) for i in vision] | |
vh = torch.stack(vision) | |
elif isinstance(vision, torch.Tensor): | |
vh = vision.unsqueeze(0) if (vision.shape==3) else vision | |
assert len(vh.shape) == 4 | |
else: | |
raise ValueError | |
vh = vh.to(self.device) | |
return self.encode_conditioning(vh) | |
# legacy | |
def get_learned_conditioning(self, c): | |
return self.encode_conditioning(c) | |
def encode_conditioning(self, c): | |
return self.cond_stage_model.encode(c) | |
def forward(self, x, c, noise=None): | |
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=x.device).long() | |
if self.cond_stage_trainable: | |
c = self.encode_conditioning(c) | |
return self.p_losses(x, c, t, noise) | |
class SD_ALL_IN_ONE(DDPM): | |
def __init__(self, | |
autokl_cfg, | |
optimus_cfg, | |
clip_cfg, | |
scale_factor=1.0, | |
scale_by_std=False, | |
*args, | |
**kwargs): | |
self.scale_by_std = scale_by_std | |
super().__init__(*args, **kwargs) | |
self.autokl = get_model()(autokl_cfg) | |
self.optimus = get_model()(optimus_cfg) | |
self.clip = get_model()(clip_cfg) | |
self.concat_mode = 'crossattn' | |
if not scale_by_std: | |
self.scale_factor = scale_factor | |
else: | |
self.register_buffer('scale_factor', torch.tensor(scale_factor)) | |
self.device = 'cpu' | |
self.parameter_group = self.create_parameter_group() | |
debug = 1 | |
def create_parameter_group(self): | |
def is_part_of_unet_image(name): | |
if name.find('.unet_image.')!=-1: | |
return True | |
return False | |
def is_part_of_unet_text(name): | |
if name.find('.unet_text.')!=-1: | |
return True | |
return False | |
def is_part_of_trans(name): | |
if name.find('.1.norm')!=-1: | |
return True | |
if name.find('.1.proj_in')!=-1: | |
return True | |
if name.find('.1.transformer_blocks')!=-1: | |
return True | |
if name.find('.1.proj_out')!=-1: | |
return True | |
return False | |
parameter_group = { | |
'image_trans' : [], | |
'image_rest' : [], | |
'text_trans' : [], | |
'text_rest' : [], | |
'rest' : [],} | |
for pname, para in self.model.named_parameters(): | |
if is_part_of_unet_image(pname): | |
if is_part_of_trans(pname): | |
parameter_group['image_trans'].append(para) | |
else: | |
parameter_group['image_rest'].append(para) | |
elif is_part_of_unet_text(pname): | |
if is_part_of_trans(pname): | |
parameter_group['text_trans'].append(para) | |
else: | |
parameter_group['text_rest'].append(para) | |
else: | |
parameter_group['rest'].append(para) | |
return parameter_group | |
def to(self, device): | |
self.device = device | |
super().to(device) | |
def on_train_batch_start(self, x): | |
# only for very first batch | |
if self.scale_by_std: | |
assert self.scale_factor == 1., \ | |
'rather not use custom rescaling and std-rescaling simultaneously' | |
# set rescale weight to 1./std of encodings | |
encoder_posterior = self.encode_first_stage(x) | |
z = self.get_first_stage_encoding(encoder_posterior).detach() | |
del self.scale_factor | |
self.register_buffer('scale_factor', 1. / z.flatten().std()) | |
highlight_print("setting self.scale_factor to {}".format(self.scale_factor)) | |
def autokl_encode(self, image): | |
encoder_posterior = self.autokl.encode(image) | |
z = encoder_posterior.sample() | |
return self.scale_factor * z | |
def autokl_decode(self, z): | |
z = 1. / self.scale_factor * z | |
return self.autokl.decode(z) | |
def mask_tokens(inputs, tokenizer, args): | |
labels = inputs.clone() | |
# We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa) | |
masked_indices = torch.bernoulli(torch.full(labels.shape, args.mlm_probability)).to(torch.uint8) | |
labels[masked_indices==1] = -1 # We only compute loss on masked tokens | |
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK]) | |
indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).to(torch.uint8) & masked_indices | |
inputs[indices_replaced] = tokenizer.convert_tokens_to_ids(tokenizer.mask_token) | |
# 10% of the time, we replace masked input tokens with random word | |
indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).to(torch.uint8) & masked_indices & ~indices_replaced | |
indices_random = indices_random | |
random_words = torch.randint(len(tokenizer), labels.shape, dtype=torch.long) | |
inputs[indices_random] = random_words[indices_random] | |
# The rest of the time (10% of the time) we keep the masked input tokens unchanged | |
return inputs, labels | |
def optimus_encode(self, text): | |
tokenizer = self.optimus.tokenizer_encoder | |
token = [tokenizer.tokenize(sentence.lower()) for sentence in text] | |
token_id = [] | |
for tokeni in token: | |
token_sentence = [tokenizer._convert_token_to_id(i) for i in tokeni] | |
token_sentence = tokenizer.add_special_tokens_single_sentence(token_sentence) | |
token_id.append(torch.LongTensor(token_sentence)) | |
token_id = torch._C._nn.pad_sequence(token_id, batch_first=True, padding_value=0.0) | |
token_id = token_id.to(self.device) | |
z = self.optimus.encoder(token_id, attention_mask=(token_id > 0).float())[1] | |
z_mu, z_logvar = self.optimus.encoder.linear(z).chunk(2, -1) | |
# z_sampled = self.optimus.reparameterize(z_mu, z_logvar, 1) | |
return z_mu.squeeze(1) | |
def optimus_decode(self, z, temperature=1.0): | |
bos_token = self.optimus.tokenizer_decoder.encode('<BOS>') | |
eos_token = self.optimus.tokenizer_decoder.encode('<EOS>') | |
context_tokens = torch.LongTensor(bos_token).to(z.device) | |
from .optimus import sample_single_sequence_conditional | |
sentenses = [] | |
for zi in z: | |
out = sample_single_sequence_conditional( | |
model=self.optimus.decoder, | |
context=context_tokens, | |
past=zi, temperature=temperature, | |
top_k=0, top_p=1.0, | |
max_length=30, | |
eos_token = eos_token[0],) | |
text = self.optimus.tokenizer_decoder.decode(out.tolist(), clean_up_tokenization_spaces=True) | |
text = text.split()[1:-1] | |
text = ' '.join(text) | |
sentenses.append(text) | |
return sentenses | |
def clip_encode_text(self, text, encode_type='encode_text'): | |
swap_type = self.clip.encode_type | |
self.clip.encode_type = encode_type | |
embedding = self.clip.encode(text) | |
self.clip.encode_type = swap_type | |
return embedding | |
def clip_encode_vision(self, vision, encode_type='encode_vision'): | |
swap_type = self.clip.encode_type | |
self.clip.encode_type = encode_type | |
if isinstance(vision, torch.Tensor): | |
vision = ((vision+1)/2).to('cpu').numpy() | |
vision = np.transpose(vision, (0, 2, 3, 1)) | |
vision = [vi for vi in vision] | |
embedding = self.clip.encode(vision) | |
self.clip.encode_type = swap_type | |
return embedding | |
def forward(self, x, c, noise=None, xtype='image', ctype='prompt'): | |
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=x.device).long() | |
return self.p_losses(x, c, t, noise, xtype, ctype) | |
def apply_model(self, x_noisy, t, cond, xtype='image', ctype='prompt'): | |
return self.model.diffusion_model(x_noisy, t, cond, xtype, ctype) | |
def get_image_loss(self, pred, target, mean=True): | |
if self.loss_type == 'l1': | |
loss = (target - pred).abs() | |
if mean: | |
loss = loss.mean() | |
elif self.loss_type == 'l2': | |
if mean: | |
loss = torch.nn.functional.mse_loss(target, pred) | |
else: | |
loss = torch.nn.functional.mse_loss(target, pred, reduction='none') | |
else: | |
raise NotImplementedError("unknown loss type '{loss_type}'") | |
return loss | |
def get_text_loss(self, pred, target): | |
if self.loss_type == 'l1': | |
loss = (target - pred).abs() | |
elif self.loss_type == 'l2': | |
loss = torch.nn.functional.mse_loss(target, pred, reduction='none') | |
return loss | |
def p_losses(self, x_start, cond, t, noise=None, xtype='image', ctype='prompt'): | |
noise = torch.randn_like(x_start) if noise is None else noise | |
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) | |
model_output = self.apply_model(x_noisy, t, cond, xtype, ctype) | |
loss_dict = {} | |
if self.parameterization == "x0": | |
target = x_start | |
elif self.parameterization == "eps": | |
target = noise | |
else: | |
raise NotImplementedError() | |
if xtype == 'image': | |
loss_simple = self.get_image_loss(model_output, target, mean=False).mean([1, 2, 3]) | |
elif xtype == 'text': | |
loss_simple = self.get_text_loss(model_output, target).mean([1]) | |
logvar_t = self.logvar[t].to(self.device) | |
if logvar_t.sum().item() != 0: | |
assert False, "Default SD training has logvar fixed at 0" | |
if self.learn_logvar: | |
assert False, "Default SD training don't learn logvar" | |
if self.l_simple_weight != 1: | |
assert False, "Default SD training always set l_simple_weight==1" | |
loss = loss_simple.mean() | |
loss_dict['loss_simple'] = loss_simple.mean().item() | |
loss_dict['Loss'] = loss.item() | |
return loss, loss_dict | |
def apply_model_ex(self, x_noisy, t, c_in, c_ex, xtype='image', c_in_type='image', c_ex_type='text', mixed_ratio=0.5): | |
return self.model.diffusion_model.forward_ex(x_noisy, t, c_in, c_ex, xtype, c_in_type, c_ex_type, mixed_ratio) | |
def apply_model_dc(self, x_noisy, t, first_c, second_c, xtype='image', first_ctype='vision', second_ctype='prompt', mixed_ratio=0.5): | |
return self.model.diffusion_model.forward_dc(x_noisy, t, first_c, second_c, xtype, first_ctype, second_ctype, mixed_ratio) |