Spaces:
Runtime error
Runtime error
import numpy as np | |
import gradio as gr | |
from transformers import AutoTokenizer,AutoModelForSequenceClassification | |
from transformers import set_seed | |
from torch.utils.data import Dataset,DataLoader | |
import torch | |
import torch.nn as nn | |
import numpy as np | |
import warnings | |
warnings.filterwarnings('ignore') | |
set_seed(4) | |
device = "cpu" | |
model_checkpoint = "facebook/esm2_t6_8M_UR50D" | |
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) | |
def AMP(file): | |
test_sequences = file | |
max_len = 30 | |
test_data = tokenizer(test_sequences, max_length=max_len, padding="max_length",truncation=True, return_tensors='pt') | |
class MyModel(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.bert = AutoModelForSequenceClassification.from_pretrained(model_checkpoint,num_labels=320) | |
self.bn1 = nn.BatchNorm1d(256) | |
self.bn2 = nn.BatchNorm1d(128) | |
self.bn3 = nn.BatchNorm1d(64) | |
self.relu = nn.ReLU() | |
self.fc1 = nn.Linear(320,256) | |
self.fc2 = nn.Linear(256,128) | |
self.fc3 = nn.Linear(128,64) | |
self.output_layer = nn.Linear(64,2) | |
self.dropout = nn.Dropout(0) | |
def forward(self,x): | |
with torch.no_grad(): | |
bert_output = self.bert(input_ids=x['input_ids'].to(device),attention_mask=x['attention_mask'].to(device)) | |
output_feature = self.dropout(bert_output["logits"]) | |
output_feature = self.relu(self.bn1(self.fc1(output_feature))) | |
output_feature = self.relu(self.bn2(self.fc2(output_feature))) | |
output_feature = self.relu(self.bn3(self.fc3(output_feature))) | |
output_feature = self.output_layer(output_feature) | |
return torch.softmax(output_feature,dim=1) | |
model = MyModel() | |
model.load_state_dict(torch.load("best_model.pth", map_location=torch.device('cpu'))) | |
model = model.to(device) | |
model.eval() | |
out_probability = [] | |
with torch.no_grad(): | |
predict = model(test_data) | |
out_probability.extend(np.max(np.array(predict.cpu()),axis=1).tolist()) | |
test_argmax = np.argmax(predict.cpu(), axis=1).tolist() | |
id2str = {0:"non-AMP", 1:"AMP"} | |
return id2str[test_argmax[0]], out_probability[0] | |
iface = gr.Interface(fn=AMP, | |
inputs="text", | |
outputs= ["text", "text"]) | |
iface.launch() |