|
import numpy as np |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
import pandas as pd |
|
from transformers import set_seed |
|
import torch |
|
import torch.nn as nn |
|
from collections import OrderedDict |
|
import warnings |
|
import gradio as gr |
|
from tqdm import tqdm |
|
|
|
warnings.filterwarnings('ignore') |
|
set_seed(4) |
|
device = "cpu" |
|
model_checkpoint = "esm2_t30_150M_UR50D" |
|
|
|
class MyModel(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
self.bert = AutoModelForSequenceClassification.from_pretrained(model_checkpoint,num_labels=320) |
|
self.bn1 = nn.BatchNorm1d(256) |
|
self.bn2 = nn.BatchNorm1d(128) |
|
self.bn3 = nn.BatchNorm1d(64) |
|
self.relu = nn.ReLU() |
|
self.fc1 = nn.Linear(320,256) |
|
self.fc2 = nn.Linear(256,128) |
|
self.fc3 = nn.Linear(128,64) |
|
self.output_layer = nn.Linear(64,2) |
|
self.dropout = nn.Dropout(0) |
|
|
|
def forward(self,x): |
|
with torch.no_grad(): |
|
bert_output = self.bert(input_ids=x['input_ids'].to(device),attention_mask=x['attention_mask'].to(device)) |
|
output_feature = self.dropout(bert_output["logits"]) |
|
output_feature = self.relu(self.bn1(self.fc1(output_feature))) |
|
output_feature = self.relu(self.bn2(self.fc2(output_feature))) |
|
output_feature = self.relu(self.bn3(self.fc3(output_feature))) |
|
output_feature = self.output_layer(output_feature) |
|
return torch.softmax(output_feature,dim=1) |
|
|
|
def Kmers_funct(seq,num): |
|
for i in range(len(seq)): |
|
a = seq[i] |
|
l = [] |
|
for index in range(len(a)): |
|
t = a[index:index + num] |
|
if (len(t)) == num: |
|
l.append(t) |
|
return l |
|
|
|
def ACE(file): |
|
test_seq = file |
|
all = [] |
|
seq_len = len(test_seq) |
|
if seq_len > 30: |
|
for j in range(2, 11): |
|
X = Kmers_funct([test_seq], j) |
|
all.extend(X) |
|
else: |
|
all.append(test_seq) |
|
model = MyModel() |
|
model.load_state_dict(torch.load("best_model.pth", map_location=torch.device('cpu')), strict=False) |
|
model = model.to(device) |
|
model.eval() |
|
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) |
|
max_len = 30 |
|
|
|
seq_all = [] |
|
output_all = [] |
|
probability_all = [] |
|
for seq in tqdm(all): |
|
test_data = tokenizer(seq, max_length=max_len, padding="max_length",truncation=True, return_tensors='pt') |
|
out_probability = [] |
|
with torch.no_grad(): |
|
predict = model(test_data) |
|
out_probability.extend(np.max(np.array(predict.cpu()),axis=1).tolist()) |
|
test_argmax = np.argmax(predict.cpu(), axis=1).tolist() |
|
id2str = {0:"non-ACE", 1:"ACE"} |
|
output = id2str[test_argmax[0]] |
|
probability = out_probability[0] |
|
seq_all.append(seq) |
|
output_all.append(output) |
|
probability_all.append(probability) |
|
|
|
summary = OrderedDict() |
|
summary['Seq'] = seq_all |
|
summary['Class'] = output_all |
|
summary['Probability'] = probability_all |
|
summary_df = pd.DataFrame(summary) |
|
summary_df.to_csv('output.csv', index=False) |
|
|
|
if seq_len > 30: |
|
out_text = "None" |
|
out_prob = "None" |
|
|
|
else: |
|
out_text = output |
|
out_prob = probability |
|
|
|
|
|
return 'output.csv', out_text, out_prob |
|
|
|
with open("ACE.md", "r") as f: |
|
description = f.read() |
|
iface = gr.Interface(fn=ACE, |
|
title="🏹DeepACE", |
|
inputs=gr.Textbox(show_label=False, placeholder="Enter peptide or protein", lines=4), |
|
outputs= ["file",gr.Textbox(show_label=False, placeholder="class", lines=1),gr.Textbox(show_label=False, placeholder="probability", lines=1)], |
|
description=description) |
|
iface.launch() |