File size: 13,069 Bytes
9259a4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
#   Copyright 2021 Gabriele Orlando
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
#
#       http://www.apache.org/licenses/LICENSE-2.0
#
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.

import os,torch
from pyuul.sources.globalVariables import *
from pyuul.sources import  hashings

import numpy as np
import random

def setup_seed(seed):
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    np.random.seed(seed)
    random.seed(seed)
    torch.backends.cudnn.deterministic = True
setup_seed(100)

def parseSDF(SDFFile):
	"""
	function to parse pdb files. It can be used to parse a single file or all the pdb files in a folder. In case a folder is given, the coordinates are gonna be padded

	Parameters
	----------
	SDFFile : str
		path of the PDB file or of the folder containing multiple PDB files

	Returns
	-------
	coords : torch.Tensor
		coordinates of the atoms in the pdb file(s). Shape ( batch, numberOfAtoms, 3)

	atomNames : list
		a list of the atom identifier. It encodes atom type, residue type, residue position and chain

	"""
	if not os.path.isdir(SDFFile):
		fil = SDFFile
		totcoords=[]
		totaname=[]
		coords = []
		atomNames = []
		for line in open(fil).readlines():
			a=line.strip().split()
			if len(a)==16: ## atom
				element = a[3]
				x = float(a[0])
				y = float(a[1])
				z = float(a[2])
				coords += [[x,y,z]]
				#aname = line[17:20].strip()+"_"+str(resnum)+"_"+line[12:16].strip()+"_"+line[21]
				aname = "MOL"+"_"+"0"+"_"+element+"_"+"A"

				atomNames += [aname]
			elif "$$$$" in line:
				totcoords+=[torch.tensor(coords)]
				totaname += [atomNames]
				coords=[]
				atomNames=[]
		return torch.torch.nn.utils.rnn.pad_sequence(totcoords, batch_first=True, padding_value=PADDING_INDEX),totaname
	else:
		totcoords = []
		totaname = []
		for fil in sorted(os.listdir(SDFFile)):
			coords = []
			atomNames = []
			for line in open(SDFFile+fil).readlines():
				a = line.strip().split()
				if len(a) == 16:  ## atom
					element = a[3]
					x = float(a[0])
					y = float(a[1])
					z = float(a[2])
					coords += [[x, y, z]]
					aname = "MOL"+"_"+"0"+"_"+element+"_"+"A"

					atomNames += [aname]
				elif "$$$$" in line:
					totcoords += [torch.tensor(coords)]
					totaname += [atomNames]
					coords = []
					atomNames = []
		return torch.torch.nn.utils.rnn.pad_sequence(totcoords, batch_first=True, padding_value=PADDING_INDEX),totaname


def parsePDB(PDBFile,keep_only_chains=None,keep_hetatm=True,bb_only=False):

	"""
	function to parse pdb files. It can be used to parse a single file or all the pdb files in a folder. In case a folder is given, the coordinates are gonna be padded

	Parameters
	----------
	PDBFile : str
		path of the PDB file or of the folder containing multiple PDB files
	bb_only : bool
		if True ignores all the atoms but backbone N, C and CA
	keep_only_chains : str or None
		ignores all the chain but the one given. If None it keeps all chains
	keep_hetatm : bool
		if False it ignores heteroatoms
	Returns
	-------
	coords : torch.Tensor
		coordinates of the atoms in the pdb file(s). Shape ( batch, numberOfAtoms, 3)

	atomNames : list
		a list of the atom identifier. It encodes atom type, residue type, residue position and chain

	"""

	bbatoms = ["N", "CA", "C"]
	if not os.path.isdir(PDBFile):
		fil = PDBFile
		coords = []
		atomNames = []
		cont = -1
		oldres=-999
		for line in open(fil).readlines():


			if line[:4] == "ATOM":
				if keep_only_chains is not None and (not line[21] in keep_only_chains):
					continue
				if bb_only and not line[12:16].strip() in bbatoms:
						continue
				if oldres != int(line[22:26]):
					cont+=1
					oldres=int(line[22:26])
				resnum = int(line[22:26])
				atomNames += [line[17:20].strip()+"_"+str(resnum)+"_"+line[12:16].strip()+"_"+line[21]]

				x = float(line[30:38])
				y = float(line[38:46])
				z = float(line[47:54])
				coords+=[[x,y,z]]

			elif line[:6] == "HETATM" and keep_hetatm:

				resname_het = line[17:20].strip()
				resnum = int(line[22:26])
				x = float(line[30:38])
				y = float(line[38:46])
				z = float(line[47:54])
				coords += [[x, y, z]]
				atnameHet = line[12:16].strip()
				atomNames += [resname_het+"_"+str(resnum)+"_"+atnameHet+"_"+line[21]]
		return torch.tensor(coords).unsqueeze(0), [atomNames]
	else:
		coords = []
		atomNames = []
		pdbname = []
		pdb_num = 0
		for fil in sorted(os.listdir(PDBFile)):
			# print(pdb_num)
			pdb_num +=1
			pdbname.append(fil)
			atomNamesTMP = []
			coordsTMP = []
			cont = -1
			oldres=-999
			for line in open(PDBFile+"/"+fil).readlines():
				
				if line[:4] == "ATOM":
					if keep_only_chains is not None and (not line[21] in keep_only_chains):
						continue
					if bb_only and not line[12:16].strip() in bbatoms:
						continue
					if oldres != int(line[22:26]):
						cont += 1
						oldres = int(line[22:26])

					resnum = int(line[22:26])
					atomNamesTMP += [line[17:20].strip()+"_"+str(resnum)+"_"+line[12:16].strip()+"_"+line[21]]

					x = float(line[30:38])
					y = float(line[38:46])
					z = float(line[47:54])
					coordsTMP+=[[x,y,z]]

				elif line[:6] == "HETATM" and keep_hetatm:
					if line[17:20].strip()!="GTP":
						continue
					x = float(line[30:38])
					y = float(line[38:46])
					z = float(line[47:54])
					resnum = int(line[22:26])
					coordsTMP += [[x, y, z]]
					atnameHet = line[12:16].strip()
					atomNamesTMP += ["HET_"+str(resnum)+"_"+atnameHet+"_"+line[21]]
			coords+=[torch.tensor(coordsTMP)]
			atomNames += [atomNamesTMP]

		return torch.torch.nn.utils.rnn.pad_sequence(coords, batch_first=True, padding_value=PADDING_INDEX), atomNames, pdbname, pdb_num


def atomlistToChannels(atomNames, hashing="Element_Hashing", device="cpu"):
	"""
	function to get channels from atom names (obtained parsing the pdb files with the parsePDB function)

	Parameters
	----------
	atomNames : list
		atom names obtained parsing the pdb files with the parsePDB function

	hashing : "TPL_Hashing" or "Element_Hashing" or dict
		define which atoms are grouped together. You can use two default hashings or build your own hashing:

		TPL_Hashing: uses the hashing of torch protein library (https://github.com/lupoglaz/TorchProteinLibrary)
		Element_Hashing: groups atoms in accordnce with the element only: C -> 0, N -> 1, O ->2, P ->3, S- >4, H ->5, everything else ->6

		Alternatively, if you are not happy with the default hashings, you can build a dictionary of dictionaries that defines the channel of every atom type in the pdb.
		the first dictionary has the residue tag (three letters amino acid code) as key (3 letters compound name for hetero atoms, as written in the PDB file)
		every residue key is associated to a dictionary, which the atom tags (as written in the PDB files) as keys and the channel (int) as value

		for example, you can define the channels just based on the atom element as following:
		{
		'CYS': {'N': 1, 'O': 2, 'C': 0, 'SG': 3, 'CB': 0, 'CA': 0}, # channels for cysteine atoms
		'GLY': {'N': 1, 'O': 2, 'C': 0, 'CA': 0}, # channels for glycine atom
		...
		'GOL': {'O1':2,'O2':2,'O3':2,'C1':0,'C2':0,'C3':0}, # channels for glycerol atom
		...
		}

		The default encoding is the one that assigns a different channel to each element

		other encodings can be found in sources/hashings.py

	device : torch.device
			The device on which the model should run. E.g. torch.device("cuda") or torch.device("cpu:0")
	Returns
	-------
	coords : torch.Tensor
		coordinates of the atoms in the pdb file(s). Shape ( batch, numberOfAtoms, 3)

	channels : torch.tensor
		the channel of every atom. Shape (batch,numberOfAtoms)

	"""
	if hashing == "TPL_Hashing":
		hashing = hashings.TPLatom_hash

	elif hashing == "Element_Hashing":
		hashing = hashings.elements_hash
	else:
		assert type(hashing) is dict

	if type(hashing[list(hashing.keys())[0]]) == dict:
		useResName = True
	else:
		useResName = False
		assert type(hashing[list(hashing.keys())[0]]) == int
	channels = []
	for singleAtomList in atomNames:
		haTMP = []
		for i in singleAtomList:
			resname = i.split("_")[0]
			atName = i.split("_")[2]
			# if resname=="HET":
			#	atName="HET"
			if useResName:
				if resname in hashing and atName in hashing[resname]:
					haTMP += [hashing[resname][atName]]
				else:
					haTMP += [PADDING_INDEX]
					print("missing ", resname, atName)
			else:
				if atName in hashing:
					haTMP += [hashing[atName]]
				elif atName[0] in hashing:
					haTMP += [hashing[atName[0]]]
				elif hashing == "Element_Hashing":
					haTMP += [6]
				else:
					haTMP += [PADDING_INDEX]
					print("missing ", resname, atName)

		channels += [torch.tensor(haTMP, dtype=torch.float, device=device)]
	channels = torch.torch.nn.utils.rnn.pad_sequence(channels, batch_first=True, padding_value=PADDING_INDEX)
	return channels


def atomlistToRadius(atomList, hashing="FoldX_radius", device="cpu"):
	"""
	function to get radius from atom names (obtained parsing the pdb files with the parsePDB function)



	Parameters
	----------
	atomNames : list
		atom names obtained parsing the pdb files with the parsePDB function
	hashing : FoldX_radius or dict
		"FoldX_radius" provides the radius used by the FoldX force field

		Alternatively, if you are not happy with the foldX radius, you can build a dictionary of dictionaries that defines the radius of every atom type in the pdb.
		The first dictionary has the residue tag (three letters amino acid code) as key (3 letters compound name for hetero atoms, as written in the PDB file)
		every residue key is associated to a dictionary, which the atom tags (as written in the PDB files) as keys and the radius (float) as value

		for example, you can define the radius as following:
		{
		'CYS': {'N': 1.45, 'O': 1.37, 'C': 1.7, 'SG': 1.7, 'CB': 1.7, 'CA': 1.7}, # radius for cysteine atoms
		'GLY': {'N': 1.45, 'O': 1.37, 'C': 1.7, 'CA': 1.7}, # radius for glycine atoms
		...
		'GOL': {'O1':1.37,'O2':1.37,'O3':1.37,'C1':1.7,'C2':1.7,'C3':1.7}, # radius for glycerol atoms
		...
		}

		The default radius are the ones defined in FoldX

		Radius default dictionary can be found in sources/hashings.py

	device : torch.device
			The device on which the model should run. E.g. torch.device("cuda") or torch.device("cpu:0")
	Returns
	-------
	coords : torch.Tensor
		coordinates of the atoms in the pdb file(s). Shape ( batch, numberOfAtoms, 3)

	radius : torch.tensor
		The radius of every atom. Shape (batch,numberOfAtoms)

	"""
	if hashing == "FoldX_radius":
		hashing = hashings.radius
		hahsingSomgleAtom = hashings.radiusSingleAtom
	else:
		assert type(hashing) is dict

	radius = []
	for singleAtomList in atomList:
		haTMP = []
		for i in singleAtomList:
			resname = i.split("_")[0]
			atName = i.split("_")[2]
			if resname in hashing and atName in hashing[resname]:
				haTMP += [hashing[resname][atName]]
			elif atName[0] in hahsingSomgleAtom:
				haTMP += [hahsingSomgleAtom[atName[0]]]
			else:
				haTMP += [1.0]
				print("missing ", resname, atName)
		radius += [torch.tensor(haTMP, dtype=torch.float, device=device)]
	radius = torch.torch.nn.utils.rnn.pad_sequence(radius, batch_first=True, padding_value=PADDING_INDEX)
	return radius


'''
def write_pdb(batchedCoords, atomNames , name=None, output_folder="outpdb/"): #I need to add the chain id

	if name is None:
		name = range(len(batchedCoords))

	for struct in range(len(name)):
		f = open(output_folder + str(name[struct]) + ".pdb", "w")

		coords=batchedCoords[struct].data.numpy()
		atname=atomNames[struct]
		for i in range(len(coords)):

			rnName = atname[i].split("_")[0]#hashings.resi_hash_inverse[resi_list[i]]
			atName = atname[i].split("_")[2]#hashings.atom_hash_inverse[resi_list[i]][atom_list[i]]
			pos = atname[i].split("_")[1]
			chain = "A"

			num = " " * (5 - len(str(i))) + str(i)
			a_name = atName + " " * (4 - len(atName))
			numres = " " * (4 - len(str(pos))) + str(pos)

			x = round(float(coords[i][0]), 3)
			sx = str(x)
			while len(sx.split(".")[1]) < 3:
				sx += "0"
			x = " " * (8 - len(sx)) + sx

			y = round(float(coords[i][1]), 3)
			sy = str(y)
			while len(sy.split(".")[1]) < 3:
				sy += "0"
			y = " " * (8 - len(sy)) + sy

			z = round(float(coords[i][2]), 3)
			sz = str(z)
			while len(sz.split(".")[1]) < 3:
				sz += "0"
			z = " " * (8 - len(sz)) + sz
			chain = " " * (2 - len(chain)) + chain

			if rnName !="HET":
				f.write("ATOM  " + num + "  " + a_name + "" + rnName + chain + numres + "    " + x + y + z + "  1.00 64.10           " + atName[0] + "\n")
			else:
				f.write("HETATM" + num + "  " + a_name + "" + rnName + chain + numres + "    " + x + y + z + "  1.00 64.10           " + atName[0] + "\n")
'''