File size: 12,483 Bytes
9259a4a 4627e6f 9259a4a 1868bef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
import os,torch
from pyuul.sources.globalVariables import *
from pyuul.sources import hashings
import numpy as np
import random
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
setup_seed(100)
def parseSDF(SDFFile):
"""
function to parse pdb files. It can be used to parse a single file or all the pdb files in a folder. In case a folder is given, the coordinates are gonna be padded
Parameters
----------
SDFFile : str
path of the PDB file or of the folder containing multiple PDB files
Returns
-------
coords : torch.Tensor
coordinates of the atoms in the pdb file(s). Shape ( batch, numberOfAtoms, 3)
atomNames : list
a list of the atom identifier. It encodes atom type, residue type, residue position and chain
"""
if not os.path.isdir(SDFFile):
fil = SDFFile
totcoords=[]
totaname=[]
coords = []
atomNames = []
for line in open(fil).readlines():
a=line.strip().split()
if len(a)==16: ## atom
element = a[3]
x = float(a[0])
y = float(a[1])
z = float(a[2])
coords += [[x,y,z]]
#aname = line[17:20].strip()+"_"+str(resnum)+"_"+line[12:16].strip()+"_"+line[21]
aname = "MOL"+"_"+"0"+"_"+element+"_"+"A"
atomNames += [aname]
elif "$$$$" in line:
totcoords+=[torch.tensor(coords)]
totaname += [atomNames]
coords=[]
atomNames=[]
return torch.torch.nn.utils.rnn.pad_sequence(totcoords, batch_first=True, padding_value=PADDING_INDEX),totaname
else:
totcoords = []
totaname = []
for fil in sorted(os.listdir(SDFFile)):
coords = []
atomNames = []
for line in open(SDFFile+fil).readlines():
a = line.strip().split()
if len(a) == 16: ## atom
element = a[3]
x = float(a[0])
y = float(a[1])
z = float(a[2])
coords += [[x, y, z]]
aname = "MOL"+"_"+"0"+"_"+element+"_"+"A"
atomNames += [aname]
elif "$$$$" in line:
totcoords += [torch.tensor(coords)]
totaname += [atomNames]
coords = []
atomNames = []
return torch.torch.nn.utils.rnn.pad_sequence(totcoords, batch_first=True, padding_value=PADDING_INDEX),totaname
def parsePDB(PDBFile,keep_only_chains=None,keep_hetatm=True,bb_only=False):
"""
function to parse pdb files. It can be used to parse a single file or all the pdb files in a folder. In case a folder is given, the coordinates are gonna be padded
Parameters
----------
PDBFile : str
path of the PDB file or of the folder containing multiple PDB files
bb_only : bool
if True ignores all the atoms but backbone N, C and CA
keep_only_chains : str or None
ignores all the chain but the one given. If None it keeps all chains
keep_hetatm : bool
if False it ignores heteroatoms
Returns
-------
coords : torch.Tensor
coordinates of the atoms in the pdb file(s). Shape ( batch, numberOfAtoms, 3)
atomNames : list
a list of the atom identifier. It encodes atom type, residue type, residue position and chain
"""
bbatoms = ["N", "CA", "C"]
if not os.path.isdir(PDBFile):
fil = PDBFile
coords = []
atomNames = []
cont = -1
oldres=-999
for line in open(fil).readlines():
if line[:4] == "ATOM":
if keep_only_chains is not None and (not line[21] in keep_only_chains):
continue
if bb_only and not line[12:16].strip() in bbatoms:
continue
if oldres != int(line[22:26]):
cont+=1
oldres=int(line[22:26])
resnum = int(line[22:26])
atomNames += [line[17:20].strip()+"_"+str(resnum)+"_"+line[12:16].strip()+"_"+line[21]]
x = float(line[30:38])
y = float(line[38:46])
z = float(line[47:54])
coords+=[[x,y,z]]
elif line[:6] == "HETATM" and keep_hetatm:
resname_het = line[17:20].strip()
resnum = int(line[22:26])
x = float(line[30:38])
y = float(line[38:46])
z = float(line[47:54])
coords += [[x, y, z]]
atnameHet = line[12:16].strip()
atomNames += [resname_het+"_"+str(resnum)+"_"+atnameHet+"_"+line[21]]
return torch.tensor(coords).unsqueeze(0), [atomNames]
else:
coords = []
atomNames = []
pdbname = []
pdb_num = 0
for fil in sorted(os.listdir(PDBFile)):
# print(pdb_num)
pdb_num +=1
pdbname.append(fil)
atomNamesTMP = []
coordsTMP = []
cont = -1
oldres=-999
for line in open(PDBFile+"/"+fil).readlines():
if line[:4] == "ATOM":
if keep_only_chains is not None and (not line[21] in keep_only_chains):
continue
if bb_only and not line[12:16].strip() in bbatoms:
continue
if oldres != int(line[22:26]):
cont += 1
oldres = int(line[22:26])
resnum = int(line[22:26])
atomNamesTMP += [line[17:20].strip()+"_"+str(resnum)+"_"+line[12:16].strip()+"_"+line[21]]
x = float(line[30:38])
y = float(line[38:46])
z = float(line[47:54])
coordsTMP+=[[x,y,z]]
elif line[:6] == "HETATM" and keep_hetatm:
if line[17:20].strip()!="GTP":
continue
x = float(line[30:38])
y = float(line[38:46])
z = float(line[47:54])
resnum = int(line[22:26])
coordsTMP += [[x, y, z]]
atnameHet = line[12:16].strip()
atomNamesTMP += ["HET_"+str(resnum)+"_"+atnameHet+"_"+line[21]]
coords+=[torch.tensor(coordsTMP)]
atomNames += [atomNamesTMP]
print(atomNames)
print(pdbname)
print(pdb_num)
return torch.torch.nn.utils.rnn.pad_sequence(coords, batch_first=True, padding_value=PADDING_INDEX), atomNames, pdbname, pdb_num
def atomlistToChannels(atomNames, hashing="Element_Hashing", device="cpu"):
"""
function to get channels from atom names (obtained parsing the pdb files with the parsePDB function)
Parameters
----------
atomNames : list
atom names obtained parsing the pdb files with the parsePDB function
hashing : "TPL_Hashing" or "Element_Hashing" or dict
define which atoms are grouped together. You can use two default hashings or build your own hashing:
TPL_Hashing: uses the hashing of torch protein library (https://github.com/lupoglaz/TorchProteinLibrary)
Element_Hashing: groups atoms in accordnce with the element only: C -> 0, N -> 1, O ->2, P ->3, S- >4, H ->5, everything else ->6
Alternatively, if you are not happy with the default hashings, you can build a dictionary of dictionaries that defines the channel of every atom type in the pdb.
the first dictionary has the residue tag (three letters amino acid code) as key (3 letters compound name for hetero atoms, as written in the PDB file)
every residue key is associated to a dictionary, which the atom tags (as written in the PDB files) as keys and the channel (int) as value
for example, you can define the channels just based on the atom element as following:
{
'CYS': {'N': 1, 'O': 2, 'C': 0, 'SG': 3, 'CB': 0, 'CA': 0}, # channels for cysteine atoms
'GLY': {'N': 1, 'O': 2, 'C': 0, 'CA': 0}, # channels for glycine atom
...
'GOL': {'O1':2,'O2':2,'O3':2,'C1':0,'C2':0,'C3':0}, # channels for glycerol atom
...
}
The default encoding is the one that assigns a different channel to each element
other encodings can be found in sources/hashings.py
device : torch.device
The device on which the model should run. E.g. torch.device("cuda") or torch.device("cpu:0")
Returns
-------
coords : torch.Tensor
coordinates of the atoms in the pdb file(s). Shape ( batch, numberOfAtoms, 3)
channels : torch.tensor
the channel of every atom. Shape (batch,numberOfAtoms)
"""
if hashing == "TPL_Hashing":
hashing = hashings.TPLatom_hash
elif hashing == "Element_Hashing":
hashing = hashings.elements_hash
else:
assert type(hashing) is dict
if type(hashing[list(hashing.keys())[0]]) == dict:
useResName = True
else:
useResName = False
assert type(hashing[list(hashing.keys())[0]]) == int
channels = []
for singleAtomList in atomNames:
haTMP = []
for i in singleAtomList:
resname = i.split("_")[0]
atName = i.split("_")[2]
# if resname=="HET":
# atName="HET"
if useResName:
if resname in hashing and atName in hashing[resname]:
haTMP += [hashing[resname][atName]]
else:
haTMP += [PADDING_INDEX]
print("missing ", resname, atName)
else:
if atName in hashing:
haTMP += [hashing[atName]]
elif atName[0] in hashing:
haTMP += [hashing[atName[0]]]
elif hashing == "Element_Hashing":
haTMP += [6]
else:
haTMP += [PADDING_INDEX]
print("missing ", resname, atName)
channels += [torch.tensor(haTMP, dtype=torch.float, device=device)]
channels = torch.torch.nn.utils.rnn.pad_sequence(channels, batch_first=True, padding_value=PADDING_INDEX)
return channels
def atomlistToRadius(atomList, hashing="FoldX_radius", device="cpu"):
"""
function to get radius from atom names (obtained parsing the pdb files with the parsePDB function)
Parameters
----------
atomNames : list
atom names obtained parsing the pdb files with the parsePDB function
hashing : FoldX_radius or dict
"FoldX_radius" provides the radius used by the FoldX force field
Alternatively, if you are not happy with the foldX radius, you can build a dictionary of dictionaries that defines the radius of every atom type in the pdb.
The first dictionary has the residue tag (three letters amino acid code) as key (3 letters compound name for hetero atoms, as written in the PDB file)
every residue key is associated to a dictionary, which the atom tags (as written in the PDB files) as keys and the radius (float) as value
for example, you can define the radius as following:
{
'CYS': {'N': 1.45, 'O': 1.37, 'C': 1.7, 'SG': 1.7, 'CB': 1.7, 'CA': 1.7}, # radius for cysteine atoms
'GLY': {'N': 1.45, 'O': 1.37, 'C': 1.7, 'CA': 1.7}, # radius for glycine atoms
...
'GOL': {'O1':1.37,'O2':1.37,'O3':1.37,'C1':1.7,'C2':1.7,'C3':1.7}, # radius for glycerol atoms
...
}
The default radius are the ones defined in FoldX
Radius default dictionary can be found in sources/hashings.py
device : torch.device
The device on which the model should run. E.g. torch.device("cuda") or torch.device("cpu:0")
Returns
-------
coords : torch.Tensor
coordinates of the atoms in the pdb file(s). Shape ( batch, numberOfAtoms, 3)
radius : torch.tensor
The radius of every atom. Shape (batch,numberOfAtoms)
"""
if hashing == "FoldX_radius":
hashing = hashings.radius
hahsingSomgleAtom = hashings.radiusSingleAtom
else:
assert type(hashing) is dict
radius = []
for singleAtomList in atomList:
haTMP = []
for i in singleAtomList:
resname = i.split("_")[0]
atName = i.split("_")[2]
if resname in hashing and atName in hashing[resname]:
haTMP += [hashing[resname][atName]]
elif atName[0] in hahsingSomgleAtom:
haTMP += [hahsingSomgleAtom[atName[0]]]
else:
haTMP += [1.0]
print("missing ", resname, atName)
radius += [torch.tensor(haTMP, dtype=torch.float, device=device)]
radius = torch.torch.nn.utils.rnn.pad_sequence(radius, batch_first=True, padding_value=PADDING_INDEX)
return radius
'''
def write_pdb(batchedCoords, atomNames , name=None, output_folder="outpdb/"): #I need to add the chain id
if name is None:
name = range(len(batchedCoords))
for struct in range(len(name)):
f = open(output_folder + str(name[struct]) + ".pdb", "w")
coords=batchedCoords[struct].data.numpy()
atname=atomNames[struct]
for i in range(len(coords)):
rnName = atname[i].split("_")[0]#hashings.resi_hash_inverse[resi_list[i]]
atName = atname[i].split("_")[2]#hashings.atom_hash_inverse[resi_list[i]][atom_list[i]]
pos = atname[i].split("_")[1]
chain = "A"
num = " " * (5 - len(str(i))) + str(i)
a_name = atName + " " * (4 - len(atName))
numres = " " * (4 - len(str(pos))) + str(pos)
x = round(float(coords[i][0]), 3)
sx = str(x)
while len(sx.split(".")[1]) < 3:
sx += "0"
x = " " * (8 - len(sx)) + sx
y = round(float(coords[i][1]), 3)
sy = str(y)
while len(sy.split(".")[1]) < 3:
sy += "0"
y = " " * (8 - len(sy)) + sy
z = round(float(coords[i][2]), 3)
sz = str(z)
while len(sz.split(".")[1]) < 3:
sz += "0"
z = " " * (8 - len(sz)) + sz
chain = " " * (2 - len(chain)) + chain
if rnName !="HET":
f.write("ATOM " + num + " " + a_name + "" + rnName + chain + numres + " " + x + y + z + " 1.00 64.10 " + atName[0] + "\n")
else:
f.write("HETATM" + num + " " + a_name + "" + rnName + chain + numres + " " + x + y + z + " 1.00 64.10 " + atName[0] + "\n")
''' |