oussnaji's picture
Create app.py
bab012b verified
raw
history blame
17.9 kB
import streamlit as st
import anthropic
import requests
import base64
import json
import time
import os
from typing import Dict, List, Any
import fal_client
from dotenv import load_dotenv
from IPython.display import Image as IPImage, display
# Page config
st.set_page_config(
page_title="Interactive Course Preview Generator",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS for modern, minimalist design
st.markdown("""
<style>
.main {background-color: #f8f9fa;}
.stButton>button {
background-color: #4c6ef5;
color: white;
border-radius: 4px;
border: none;
padding: 0.5rem 1rem;
}
.content-box {
background-color: white;
padding: 1.5rem;
border-radius: 8px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
margin: 1rem 0;
}
.section-title {
color: #4c6ef5;
font-size: 1.2rem;
font-weight: bold;
margin-bottom: 1rem;
}
</style>
""", unsafe_allow_html=True)
st.markdown("""
<style>
.main {background-color: #f8f9fa;}
.subtitle {
color: #6c757d;
font-size: 0.9rem;
font-style: italic;
margin-top: 0.5rem;
}
.preview-content {
background-color: #f8f9fa;
padding: 1rem;
border-left: 3px solid #4c6ef5;
margin: 1rem 0;
}
.script-content {
background-color: #e9ecef;
padding: 1rem;
border-radius: 4px;
margin: 1rem 0;
}
</style>
""", unsafe_allow_html=True)
# Templates for content generation
COURSE_TEMPLATE = """Create a concise course outline for:
Topic: {topic}
Level: {level}
Duration: {duration}
Include:
1. Brief course description (2-3 sentences)
2. 4-5 main sections
3. For each section:
- Title
- Brief description (1 sentence)
- 2-3 key concepts
Format it clearly and professionally."""
PREVIEW_TEMPLATE = """Create content for two brief preview slides about the concept: {concept}
For each slide include EXACTLY in this order:
1. Slide Title
2. Content (3 brief bullet points maximum)
3. Teacher Script (2-3 sentences maximum)
4. Image Description (one sentence describing a minimalist visual)
Format each slide clearly with these exact headers:
"Slide 1:", "Content:", "Teacher Script:", "Image Description:"
"Slide 2:", "Content:", "Teacher Script:", "Image Description:"
"""
INSTRUCTOR_INTRO_TEMPLATE = """Create a very brief welcome message (2 sentences maximum) for:
Instructor: {name}
Course: {topic}
Style: {style}
Keep it natural and concise."""
# API Integration Functions
def generate_image(description: str) -> str:
"""Generate image using verified Fal.ai implementation with proper waiting"""
try:
with st.spinner(f"Generating image for: {description}"):
handler = fal_client.submit(
"fal-ai/flux-pro/v1.1-ultra",
arguments={
"prompt": f"Professional minimalist educational visual: {description}",
"num_images": 1
}
)
# Extended wait time with status check
for _ in range(30): # Maximum 30 seconds wait
time.sleep(1)
result = fal_client.result("fal-ai/flux-pro/v1.1-ultra", handler.request_id)
if result and "images" in result and result["images"]:
return result["images"][0]["url"]
return None
except Exception as e:
st.error(f"Image generation error: {e}")
return None
def generate_and_get_image(prompt: str) -> str:
"""Generate and get image using verified Fal.ai implementation"""
try:
with st.spinner(f"Generating image..."):
# Submit request
handler = fal_client.submit(
"fal-ai/flux-pro/v1.1-ultra",
arguments={"prompt": prompt, "num_images": 1}
)
request_id = handler.request_id
if request_id:
time.sleep(10) # Wait for generation
# Get result
result = fal_client.result("fal-ai/flux-pro/v1.1-ultra", request_id)
if result and "images" in result and result["images"]:
return result["images"][0]["url"]
except Exception as e:
st.error(f"Image generation error: {e}")
return None
def create_voice_preview(text: str, voice_description: str) -> bytes:
"""Create voice preview using verified ElevenLabs implementation"""
url = "https://api.elevenlabs.io/v1/text-to-voice/create-previews"
headers = {
'xi-api-key': st.secrets["ELEVENLABS_API_KEY"],
'Content-Type': 'application/json'
}
payload = {
'voice_description': voice_description,
'text': text
}
try:
response = requests.post(url, headers=headers, json=payload)
if response.status_code == 200:
return base64.b64decode(response.json()['previews'][0]['audio_base_64'])
return None
except Exception as e:
st.error(f"Voice generation error: {e}")
return None
def generate_content(topic: str, level: str, duration: str,
instructor_name: str, teaching_style: str) -> Dict:
"""Generate course content using Claude 3.5"""
client = anthropic.Anthropic(api_key=st.secrets["ANTHROPIC_API_KEY"])
try:
# Generate course outline
outline_response = client.messages.create(
model="claude-3-5-sonnet-latest",
max_tokens=4096,
messages=[
{
"role": "user",
"content": COURSE_TEMPLATE.format(
topic=topic,
level=level,
duration=duration
)
}
]
)
course_content = outline_response.content[0].text
# Parse content to get a concept for preview
sections = parse_course_content(course_content)
preview_concept = sections[0]['concepts'][0] if sections and sections[0].get('concepts') else topic
# Generate preview content
preview_response = client.messages.create(
model="claude-3-5-sonnet-latest",
max_tokens=4096,
messages=[
{
"role": "user",
"content": PREVIEW_TEMPLATE.format(concept=preview_concept)
}
]
)
# Generate instructor introduction
intro_response = client.messages.create(
model="claude-3-5-sonnet-latest",
max_tokens=4096,
messages=[
{
"role": "user",
"content": INSTRUCTOR_INTRO_TEMPLATE.format(
name=instructor_name,
style=teaching_style,
topic=topic
)
}
]
)
return {
"status": "success",
"course_outline": course_content,
"preview_content": preview_response.content[0].text,
"instructor_intro": intro_response.content[0].text,
"sections": sections
}
except Exception as e:
return {"status": "error", "message": str(e)}
def parse_outline(content: str) -> List[Dict]:
"""Parse course outline to get sections and concepts"""
sections = []
current_section = None
for line in content.split('\n'):
line = line.strip()
if not line:
continue
if line.lower().startswith(('section', 'part', 'module')):
if current_section:
sections.append(current_section)
current_section = {
'title': line,
'description': '',
'concepts': []
}
elif current_section:
if not current_section['description']:
current_section['description'] = line
elif line.startswith(('-', '•', '*')):
current_section['concepts'].append(line.lstrip('-•* '))
if current_section:
sections.append(current_section)
return sections
def parse_course_content(content: str) -> List[Dict]:
"""Parse course content into structured format"""
sections = []
current_section = None
for line in content.split('\n'):
line = line.strip()
if not line:
continue
if line.lower().startswith(('section', 'part', 'module')):
if current_section:
sections.append(current_section)
current_section = {
'title': line,
'description': '',
'concepts': []
}
elif current_section:
if not current_section['description']:
current_section['description'] = line
elif line.startswith(('-', '•', '*')):
current_section['concepts'].append(line.lstrip('-•* '))
if current_section:
sections.append(current_section)
return sections
def generate_course_outline(topic: str, level: str, duration: str) -> Dict:
"""Generate initial course outline and get first concept"""
client = anthropic.Anthropic(api_key=st.secrets["ANTHROPIC_API_KEY"])
prompt = f"""Create a course outline for:
Topic: {topic}
Level: {level}
Duration: {duration}
Include:
1. Brief course description (2-3 sentences)
2. 4-5 main sections with:
- Clear title
- 2-3 key concepts per section
- Brief description
Format clearly with sections and concepts."""
try:
response = client.messages.create(
model="claude-3-5-sonnet-latest",
max_tokens=4096,
messages=[{"role": "user", "content": prompt}]
)
outline = response.content[0].text
# Parse to get first concept
sections = parse_outline(outline)
first_concept = sections[0]['concepts'][0] if sections and sections[0].get('concepts') else topic
return {
"status": "success",
"outline": outline,
"sections": sections,
"first_concept": first_concept
}
except Exception as e:
return {"status": "error", "message": str(e)}
def generate_preview_content(topic: str, concept: str) -> str:
"""Generate preview content using Claude"""
client = anthropic.Anthropic(api_key=st.secrets["ANTHROPIC_API_KEY"])
prompt = f"""Create TWO preview slides about {concept} for a course on {topic}.
For EACH slide, provide EXACTLY in this format:
SLIDE [number]:
- Title: [slide title]
- Content: [3 clear bullet points]
- Teaching Script: [2-3 sentences explaining the slide content]
- Visual Description: [clear description for image generation]
Keep all content clear and concise."""
try:
response = client.messages.create(
model="claude-3-5-sonnet-latest",
max_tokens=4096,
messages=[{"role": "user", "content": prompt}]
)
return response.content[0].text
except Exception as e:
st.error(f"Content generation error: {e}")
return None
def parse_preview_content(content: str) -> List[Dict]:
"""Parse preview content into structured format"""
slides = []
current_slide = None
for line in content.split('\n'):
line = line.strip()
if not line:
continue
if line.startswith('SLIDE'):
if current_slide:
slides.append(current_slide)
current_slide = {
'title': '',
'content': [],
'script': '',
'visual': ''
}
elif current_slide:
if line.startswith('- Title:'):
current_slide['title'] = line.replace('- Title:', '').strip()
elif line.startswith('- Content:'):
# Next lines will be content until next section
continue
elif line.startswith('- Teaching Script:'):
current_slide['script'] = line.replace('- Teaching Script:', '').strip()
elif line.startswith('- Visual Description:'):
current_slide['visual'] = line.replace('- Visual Description:', '').strip()
elif line.startswith('-') or line.startswith('•'):
current_slide['content'].append(line.lstrip('-• ').strip())
if current_slide:
slides.append(current_slide)
return slides
def display_preview_content(preview_slides: List[Dict]):
"""Display preview content with proper styling"""
for i, slide in enumerate(preview_slides, 1):
st.markdown(f"### Preview Slide {i}")
# Content section
st.markdown('<div class="preview-content">', unsafe_allow_html=True)
for point in slide['content']:
st.markdown(f"• {point}")
st.markdown('</div>', unsafe_allow_html=True)
# Script section
st.markdown('<div class="script-content">', unsafe_allow_html=True)
st.markdown("**Teaching Script:**")
st.markdown(slide['script'])
st.markdown('</div>', unsafe_allow_html=True)
# Generate and display image
if slide['image_description']:
image_url = generate_image(slide['image_description'])
if image_url:
st.image(image_url, use_column_width=True)
def display_preview_slides(slides: List[Dict]):
"""Display preview slides with proper styling"""
for i, slide in enumerate(slides, 1):
st.markdown(f"### {slide['title']}")
col1, col2 = st.columns([2, 1])
with col1:
# Content
st.markdown('<div class="preview-content">', unsafe_allow_html=True)
for point in slide['content']:
st.markdown(f"• {point}")
st.markdown('</div>', unsafe_allow_html=True)
# Teaching Script
st.markdown('<div class="script-content">', unsafe_allow_html=True)
st.markdown("**Teaching Script:**")
st.markdown(slide['script'])
st.markdown('</div>', unsafe_allow_html=True)
with col2:
# Generate and display image
if slide['visual']:
image_url = generate_and_get_image(slide['visual'])
if image_url:
st.image(image_url, use_column_width=True)
def main():
st.title("Interactive Course Preview Generator")
st.markdown("Generate professional course previews with content, visuals, and voice narration")
# Input Section
with st.container():
st.markdown('<div class="section-title">Course Configuration</div>', unsafe_allow_html=True)
col1, col2 = st.columns(2)
with col1:
topic = st.text_input("Course Topic",
placeholder="e.g., Machine Learning Fundamentals")
level = st.selectbox("Course Level",
["Beginner", "Intermediate", "Advanced"])
duration = st.selectbox("Course Duration",
["2 Hours", "4 Hours", "8 Hours", "Full Day"])
with col2:
instructor_name = st.text_input("Instructor Name",
placeholder="e.g., Dr. Sarah Johnson")
teaching_style = st.selectbox("Teaching Style",
["Interactive", "Lecture-Based", "Project-Based", "Discussion-Led"])
instructor_gender = st.selectbox("Instructor Voice",
["Male", "Female"])
if st.button("Generate Preview", type="primary"):
with st.spinner("Creating your course preview..."):
try:
# Step 1: Generate course outline and get first concept
outline_result = generate_course_outline(topic, level, duration)
if outline_result["status"] != "success":
st.error(f"Error generating outline: {outline_result.get('message')}")
return
# Step 2: Generate instructor introduction
intro_audio = create_voice_preview(
f"Hello! I'm {instructor_name}, and I'll be your instructor for {topic}. Let's explore this exciting subject together!",
f"Professional {instructor_gender.lower()} instructor, {teaching_style.lower()} style"
)
# Step 3: Generate preview content using first concept
preview_content = generate_preview_content(topic, outline_result["first_concept"])
if not preview_content:
st.error("Failed to generate preview content")
return
# Step 4: Parse and display content
slides = parse_preview_content(preview_content)
# Display results
# Course Outline
st.markdown("## Course Overview")
st.markdown(outline_result["outline"])
# Instructor Introduction
st.markdown("## Instructor Introduction")
if intro_audio:
st.audio(intro_audio)
# Preview Slides
st.markdown("## Preview Slides")
display_preview_slides(slides)
except Exception as e:
st.error(f"An error occurred: {str(e)}")
return
if __name__ == "__main__":
main()