File size: 13,276 Bytes
f2b0fc4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
import streamlit as st
import requests
import json
import plotly.graph_objects as go
import plotly.express as px
from typing import Dict, List, Any
import time
import pandas as pd
# Page configuration
st.set_page_config(
page_title="Market Research & Analysis Platform",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom styling (updated for dark mode)
st.markdown("""
<style>
.main {
background-color: #121212;
color: #ffffff;
}
.insight-card {
background-color: #1e1e1e;
padding: 1.5rem;
border-radius: 8px;
box-shadow: 0 2px 4px rgba(255,255,255,0.1);
margin: 1rem 0;
}
.metric-card {
background-color: #1e1e1e;
padding: 1rem;
border-radius: 4px;
margin: 0.5rem 0;
}
.source-card {
background-color: #2e2e2e;
padding: 0.5rem;
border-radius: 4px;
font-size: 0.9rem;
margin-top: 0.5rem;
color: #ffffff;
}
.highlight-text {
color: #4c6ef5;
font-weight: bold;
}
</style>
""", unsafe_allow_html=True)
def query_perplexity(query: str, context: Dict) -> Dict:
url = "https://api.perplexity.ai/chat/completions"
headers = {
"Authorization": f"Bearer {st.secrets['PERPLEXITY_API_KEY']}",
"Content-Type": "application/json"
}
payload = {
"model": "llama-3.1-sonar-small-128k-online",
"messages": [
{"role": "system", "content": get_system_prompt(context)},
{"role": "user", "content": query}
],
"temperature": 0.2,
"max_tokens": 4096,
"top_p": 0.9,
"search_domain_filter": ["perplexity.ai"],
"return_images": False,
"return_related_questions": False,
"search_recency_filter": context.get('timeframe', 'month')
}
try:
response = requests.post(url, headers=headers, json=payload)
if response.status_code == 200:
return {
"status": "success",
"data": response.json(),
"citations": response.json().get("citations", [])
}
else:
return {"status": "error", "message": f"API Error: {response.status_code}"}
except Exception as e:
return {"status": "error", "message": str(e)}
def get_system_prompt(context: Dict) -> str:
# Adjust the prompt if Executive style and Comprehensive depth are selected.
if context.get("style", "").lower() == "executive" and context.get("depth", "").lower() == "comprehensive":
return f"""You are an expert market research analyst focusing on {context['focus_area']}.
Provide a high-level executive summary with key insights and concrete metrics.
Analysis style: Executive
Depth: Comprehensive
Timeline: Past {context['timeframe']}
Format your response with clear sections:
1. Executive Summary
2. Key Metrics
3. Market Position
4. Growth Analysis
5. Strategic Recommendations
Include specific numbers, percentages, and actionable insights."""
else:
return f"""You are an expert market research analyst focusing on {context['focus_area']}.
Provide detailed analysis with concrete metrics and specific insights.
Analysis style: {context['style']}
Depth: {context['depth']}
Timeline: Past {context['timeframe']}
Format your response with clear sections:
1. Key Metrics
2. Market Position
3. Growth Analysis
4. Competitive Insights
5. Strategic Recommendations
Include specific numbers, percentages, and actionable insights."""
def parse_perplexity_response(response: Dict) -> Dict:
try:
content = response['data']['choices'][0]['message']['content']
citations = response.get('citations', [])
sections = {
'key_metrics': [],
'market_position': [],
'growth_analysis': [],
'competitive_insights': [],
'recommendations': []
}
current_section = None
for line in content.split('\n'):
line = line.strip()
if not line:
continue
lower_line = line.lower()
if 'key metric' in lower_line:
current_section = 'key_metrics'
elif 'market position' in lower_line:
current_section = 'market_position'
elif 'growth' in lower_line:
current_section = 'growth_analysis'
elif 'competiti' in lower_line:
current_section = 'competitive_insights'
elif 'recommend' in lower_line:
current_section = 'recommendations'
elif current_section and line.startswith(('-', 'β’', '*')):
sections[current_section].append(line.lstrip('-β’* '))
return {"status": "success", "sections": sections, "citations": citations}
except Exception as e:
return {"status": "error", "message": str(e)}
def extract_metrics(content: Dict) -> Dict:
metrics = {
'market_share': [],
'growth_rate': [],
'competitive_position': [],
'innovation_score': []
}
try:
for section in content['sections'].values():
for line in section:
if '%' in line or any(char.isdigit() for char in line):
if 'market share' in line.lower():
metrics['market_share'].append(extract_number(line))
elif 'growth' in line.lower():
metrics['growth_rate'].append(extract_number(line))
elif 'position' in line.lower():
metrics['competitive_position'].append(extract_number(line))
elif 'innovation' in line.lower():
metrics['innovation_score'].append(extract_number(line))
return metrics
except Exception as e:
st.error(f"Error extracting metrics: {str(e)}")
return metrics
def extract_number(text: str) -> float:
import re
numbers = re.findall(r'[-+]?\d*\.?\d+%?', text)
if numbers:
number = numbers[0]
return float(number.replace('%', '')) if '%' in number else float(number)
return 0.0
def create_visualizations(metrics: Dict, context: Dict) -> Dict:
charts = {}
if metrics['market_share'] and metrics['competitive_position']:
fig = go.Figure()
categories = ['Market Share', 'Growth Rate', 'Competitive Position', 'Innovation Score']
values = [
metrics['market_share'][0] if metrics['market_share'] else 0,
metrics['growth_rate'][0] if metrics['growth_rate'] else 0,
metrics['competitive_position'][0] if metrics['competitive_position'] else 0,
metrics['innovation_score'][0] if metrics['innovation_score'] else 0
]
fig.add_trace(go.Scatterpolar(
r=values,
theta=categories,
fill='toself',
name=context['company_name']
))
fig.update_layout(
polar=dict(radialaxis=dict(visible=True, range=[0, 100])),
showlegend=False,
title=f"Market Position Analysis - {context['company_name']}"
)
charts['market_position'] = fig
if metrics['growth_rate']:
fig = go.Figure()
fig.add_trace(go.Scatter(
y=metrics['growth_rate'],
mode='lines+markers',
name='Growth Rate'
))
fig.update_layout(
title=f"Growth Trend Analysis - {context['company_name']}",
yaxis_title='Growth Rate (%)',
showlegend=True
)
charts['growth_trend'] = fig
return charts
def format_insights(content: Dict) -> str:
"""Format detailed analysis with sub-titles for each section"""
formatted = ""
section_titles = {
'key_metrics': 'π Key Metrics',
'market_position': 'π― Market Position',
'growth_analysis': 'π Growth Analysis',
'competitive_insights': 'π Competitive Insights',
'recommendations': 'π‘ Strategic Recommendations'
}
for section, title in section_titles.items():
if content['sections'].get(section):
formatted += f"\n### {title}\n\n"
for idx, point in enumerate(content['sections'][section], start=1):
formatted += f"- **{idx}.** {point}\n"
return formatted
def main():
st.title("Market Research & Analysis Platform")
st.markdown("Real-time market insights with data-driven analysis")
with st.sidebar:
st.header("Analysis Parameters")
company_name = st.text_input("Company/Product Name", placeholder="e.g., Tesla, OpenAI, Snowflake")
industry = st.selectbox("Industry", ["Technology", "AI/ML", "SaaS", "Fintech", "E-commerce", "Healthcare", "Energy", "Other"])
st.markdown("### Analysis Configuration")
focus_area = st.multiselect("Focus Areas", ["Market Position", "Growth Trajectory", "Technology Stack", "Competitive Analysis", "Innovation Trends", "Investment Outlook"], default=["Market Position", "Growth Trajectory"])
timeframe = st.select_slider("Analysis Timeframe", options=["week", "month", "quarter", "year"], value="month")
depth = st.select_slider("Analysis Depth", options=["Brief", "Detailed", "Comprehensive"], value="Detailed")
style = st.selectbox("Report Style", ["Technical", "Business", "Executive"], index=1)
competitors = st.text_input("Key Competitors (optional)", placeholder="Comma-separated names")
if st.button("Generate Analysis", type="primary"):
if not company_name:
st.warning("Please enter a company name.")
return
analysis_context = {
"company_name": company_name,
"industry": industry,
"focus_area": ", ".join(focus_area),
"timeframe": timeframe,
"depth": depth,
"style": style,
"competitors": competitors
}
with st.spinner("Generating market analysis..."):
progress_bar = st.progress(0)
status_text = st.empty()
try:
status_text.text("Gathering market intelligence...")
progress_bar.progress(20)
research_response = query_perplexity(
f"Provide a detailed market analysis for {company_name} in the {industry} industry, focusing on {', '.join(focus_area)}",
analysis_context
)
if research_response["status"] != "success":
st.error("Failed to gather market intelligence.")
return
status_text.text("Processing insights...")
progress_bar.progress(40)
parsed_content = parse_perplexity_response(research_response)
if parsed_content["status"] != "success":
st.error("Failed to process insights.")
return
status_text.text("Generating visualizations...")
progress_bar.progress(60)
metrics = extract_metrics(parsed_content)
charts = create_visualizations(metrics, analysis_context)
status_text.text("Preparing analysis report...")
progress_bar.progress(80)
tabs = st.tabs(["Overview", "Detailed Analysis", "Visualizations"])
with tabs[0]:
st.markdown("## Executive Summary", unsafe_allow_html=True)
if metrics:
cols = st.columns(len(metrics))
for col, (metric, values) in zip(cols, metrics.items()):
if values:
col.metric(metric.replace('_', ' ').title(), f"{values[0]:.1f}%")
if parsed_content["citations"]:
st.markdown("### Sources")
for citation in parsed_content["citations"]:
st.markdown(f'<div class="source-card">{citation}</div>', unsafe_allow_html=True)
with tabs[1]:
st.markdown(format_insights(parsed_content), unsafe_allow_html=True)
with tabs[2]:
for chart_name, fig in charts.items():
st.plotly_chart(fig, use_container_width=True)
progress_bar.progress(100)
status_text.text("Analysis complete!")
st.download_button(
"Download Analysis",
data=json.dumps({
"context": analysis_context,
"insights": parsed_content["sections"],
"metrics": metrics,
"citations": parsed_content["citations"]
}, indent=2),
file_name=f"market_analysis_{company_name}.json",
mime="application/json"
)
except Exception as e:
st.error(f"An error occurred: {str(e)}")
return
if __name__ == "__main__":
main()
|