Spaces:
Running
on
Zero
Running
on
Zero
Flux_lora
#1
by
ameets21
- opened
- README.md +6 -6
- app.py +81 -113
- live_preview_helpers.py +0 -166
- requirements.txt +4 -7
README.md
CHANGED
@@ -1,14 +1,14 @@
|
|
1 |
---
|
2 |
-
title: FLUX.Dev
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: true
|
10 |
license: mit
|
11 |
-
short_description: FLUX.1-Dev
|
12 |
---
|
13 |
|
14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: FLUX.Dev LORA Serverless
|
3 |
+
emoji: 🔥
|
4 |
+
colorFrom: pink
|
5 |
+
colorTo: purple
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.43.0
|
8 |
app_file: app.py
|
9 |
pinned: true
|
10 |
license: mit
|
11 |
+
short_description: FLUX.1-Dev on serverless inference, no GPU required
|
12 |
---
|
13 |
|
14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -1,143 +1,111 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
|
|
3 |
import random
|
4 |
-
import
|
5 |
-
import
|
6 |
-
from
|
7 |
-
from
|
8 |
-
|
9 |
|
10 |
-
dtype = torch.bfloat16
|
11 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
torch.cuda.empty_cache()
|
17 |
|
18 |
-
|
19 |
-
|
|
|
20 |
|
21 |
-
|
|
|
22 |
|
23 |
-
|
24 |
-
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, lora_id=None, lora_scale=0.95, progress=gr.Progress(track_tqdm=True)):
|
25 |
-
if randomize_seed:
|
26 |
-
seed = random.randint(0, MAX_SEED)
|
27 |
-
generator = torch.Generator().manual_seed(seed)
|
28 |
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
# guidance_scale=guidance_scale,
|
33 |
-
# num_inference_steps=num_inference_steps,
|
34 |
-
# width=width,
|
35 |
-
# height=height,
|
36 |
-
# generator=generator,
|
37 |
-
# output_type="pil",
|
38 |
-
# good_vae=good_vae,
|
39 |
-
# ):
|
40 |
-
# yield img, seed
|
41 |
-
|
42 |
-
# Handle LoRA loading
|
43 |
-
# Load LoRA weights and prepare joint_attention_kwargs
|
44 |
-
if lora_id and lora_id.strip() != "":
|
45 |
-
pipe.unload_lora_weights()
|
46 |
-
pipe.load_lora_weights(lora_id.strip())
|
47 |
-
joint_attention_kwargs = {"scale": lora_scale}
|
48 |
-
else:
|
49 |
-
joint_attention_kwargs = None
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
examples = [
|
71 |
"a tiny astronaut hatching from an egg on the moon",
|
72 |
"a cat holding a sign that says hello world",
|
73 |
"an anime illustration of a wiener schnitzel",
|
74 |
]
|
75 |
-
|
76 |
css = """
|
77 |
-
#
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
.generate-btn {
|
82 |
-
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important;
|
83 |
-
border: none !important;
|
84 |
-
color: white !important;
|
85 |
-
}
|
86 |
-
.generate-btn:hover {
|
87 |
-
transform: translateY(-2px);
|
88 |
-
box-shadow: 0 5px 15px rgba(0,0,0,0.2);
|
89 |
}
|
90 |
"""
|
91 |
|
92 |
-
with gr.Blocks(css=css) as app:
|
93 |
gr.HTML("<center><h1>FLUX.1-Dev with LoRA support</h1></center>")
|
94 |
-
with gr.Column(elem_id="
|
95 |
with gr.Row():
|
96 |
-
with gr.Column():
|
97 |
with gr.Row():
|
98 |
-
text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=
|
99 |
with gr.Row():
|
100 |
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path (optional)", placeholder="multimodalart/vintage-ads-flux")
|
101 |
with gr.Row():
|
102 |
with gr.Accordion("Advanced Settings", open=False):
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
)
|
110 |
-
with gr.Row():
|
111 |
-
width = gr.Slider(label="Width", value=1024, minimum=64, maximum=2048, step=8)
|
112 |
-
height = gr.Slider(label="Height", value=1024, minimum=64, maximum=2048, step=8)
|
113 |
-
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=4294967296, step=1)
|
114 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
115 |
-
with gr.Row():
|
116 |
-
steps = gr.Slider(label="Inference steps steps", value=28, minimum=1, maximum=100, step=1)
|
117 |
-
cfg = gr.Slider(label="Guidance Scale", value=3.5, minimum=1, maximum=20, step=0.5)
|
118 |
-
# method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
|
119 |
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
inputs = [text_prompt],
|
132 |
-
)
|
133 |
-
gr.on(
|
134 |
-
triggers=[text_button.click, text_prompt.submit],
|
135 |
-
fn = infer,
|
136 |
-
inputs=[text_prompt, seed, randomize_seed, width, height, cfg, steps, custom_lora, lora_scale],
|
137 |
-
outputs=[image_output, seed]
|
138 |
-
)
|
139 |
|
140 |
-
|
141 |
-
# text_button.click(infer, inputs=[text_prompt, seed, randomize_seed, width, height, cfg, steps, custom_lora, lora_scale], outputs=[image_output,seed_output, seed])
|
142 |
|
143 |
-
app.launch(share=
|
|
|
1 |
import gradio as gr
|
2 |
+
import requests
|
3 |
+
import io
|
4 |
import random
|
5 |
+
import os
|
6 |
+
import time
|
7 |
+
from PIL import Image
|
8 |
+
from deep_translator import GoogleTranslator
|
9 |
+
import json
|
10 |
|
|
|
|
|
11 |
|
12 |
+
API_TOKEN = os.getenv("HF_READ_TOKEN")
|
13 |
+
headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
14 |
+
timeout = 100
|
|
|
15 |
|
16 |
+
def query(lora_id, prompt, is_negative=False, steps=28, cfg_scale=3.5, sampler="DPM++ 2M Karras", seed=-1, strength=0.7):
|
17 |
+
if prompt == "" or prompt == None:
|
18 |
+
return None
|
19 |
|
20 |
+
if lora_id.strip() == "" or lora_id == None:
|
21 |
+
lora_id = "black-forest-labs/FLUX.1-dev"
|
22 |
|
23 |
+
key = random.randint(0, 999)
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
API_URL = "https://api-inference.huggingface.co/models/"+ lora_id.strip()
|
26 |
|
27 |
+
API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")])
|
28 |
+
headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
+
prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
|
31 |
+
print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')
|
32 |
+
|
33 |
+
prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
|
34 |
+
print(f'\033[1mGeneration {key}:\033[0m {prompt}')
|
35 |
+
|
36 |
+
# If seed is -1, generate a random seed and use it
|
37 |
+
if seed == -1:
|
38 |
+
seed = random.randint(1, 1000000000)
|
39 |
+
|
40 |
+
payload = {
|
41 |
+
"inputs": prompt,
|
42 |
+
"steps": steps,
|
43 |
+
"cfg_scale": cfg_scale,
|
44 |
+
"seed": seed,
|
45 |
+
}
|
46 |
+
|
47 |
+
response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
|
48 |
+
if response.status_code != 200:
|
49 |
+
print(f"Error: Failed to get image. Response status: {response.status_code}")
|
50 |
+
print(f"Response content: {response.text}")
|
51 |
+
if response.status_code == 503:
|
52 |
+
raise gr.Error(f"{response.status_code} : The model is being loaded")
|
53 |
+
raise gr.Error(f"{response.status_code}")
|
54 |
|
55 |
+
try:
|
56 |
+
image_bytes = response.content
|
57 |
+
image = Image.open(io.BytesIO(image_bytes))
|
58 |
+
print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})')
|
59 |
+
return image, seed
|
60 |
+
except Exception as e:
|
61 |
+
print(f"Error when trying to open the image: {e}")
|
62 |
+
return None
|
63 |
+
|
64 |
+
|
65 |
examples = [
|
66 |
"a tiny astronaut hatching from an egg on the moon",
|
67 |
"a cat holding a sign that says hello world",
|
68 |
"an anime illustration of a wiener schnitzel",
|
69 |
]
|
70 |
+
|
71 |
css = """
|
72 |
+
#app-container {
|
73 |
+
max-width: 600px;
|
74 |
+
margin-left: auto;
|
75 |
+
margin-right: auto;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
}
|
77 |
"""
|
78 |
|
79 |
+
with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app:
|
80 |
gr.HTML("<center><h1>FLUX.1-Dev with LoRA support</h1></center>")
|
81 |
+
with gr.Column(elem_id="app-container"):
|
82 |
with gr.Row():
|
83 |
+
with gr.Column(elem_id="prompt-container"):
|
84 |
with gr.Row():
|
85 |
+
text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=2, elem_id="prompt-text-input")
|
86 |
with gr.Row():
|
87 |
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path (optional)", placeholder="multimodalart/vintage-ads-flux")
|
88 |
with gr.Row():
|
89 |
with gr.Accordion("Advanced Settings", open=False):
|
90 |
+
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input")
|
91 |
+
steps = gr.Slider(label="Sampling steps", value=28, minimum=1, maximum=100, step=1)
|
92 |
+
cfg = gr.Slider(label="CFG Scale", value=3.5, minimum=1, maximum=20, step=0.5)
|
93 |
+
method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
|
94 |
+
strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001)
|
95 |
+
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
+
with gr.Row():
|
98 |
+
text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
|
99 |
+
with gr.Row():
|
100 |
+
image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
|
101 |
+
with gr.Row():
|
102 |
+
seed_output = gr.Textbox(label="Seed Used", show_copy_button = True, elem_id="seed-output")
|
103 |
+
|
104 |
+
gr.Examples(
|
105 |
+
examples = examples,
|
106 |
+
inputs = [text_prompt],
|
107 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
+
text_button.click(query, inputs=[custom_lora, text_prompt, negative_prompt, steps, cfg, method, seed, strength], outputs=[image_output,seed_output])
|
|
|
110 |
|
111 |
+
app.launch(show_api=False, share=False)
|
live_preview_helpers.py
DELETED
@@ -1,166 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import numpy as np
|
3 |
-
from diffusers import FluxPipeline, AutoencoderTiny, FlowMatchEulerDiscreteScheduler
|
4 |
-
from typing import Any, Dict, List, Optional, Union
|
5 |
-
|
6 |
-
# Helper functions
|
7 |
-
def calculate_shift(
|
8 |
-
image_seq_len,
|
9 |
-
base_seq_len: int = 256,
|
10 |
-
max_seq_len: int = 4096,
|
11 |
-
base_shift: float = 0.5,
|
12 |
-
max_shift: float = 1.16,
|
13 |
-
):
|
14 |
-
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
15 |
-
b = base_shift - m * base_seq_len
|
16 |
-
mu = image_seq_len * m + b
|
17 |
-
return mu
|
18 |
-
|
19 |
-
def retrieve_timesteps(
|
20 |
-
scheduler,
|
21 |
-
num_inference_steps: Optional[int] = None,
|
22 |
-
device: Optional[Union[str, torch.device]] = None,
|
23 |
-
timesteps: Optional[List[int]] = None,
|
24 |
-
sigmas: Optional[List[float]] = None,
|
25 |
-
**kwargs,
|
26 |
-
):
|
27 |
-
if timesteps is not None and sigmas is not None:
|
28 |
-
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
29 |
-
if timesteps is not None:
|
30 |
-
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
31 |
-
timesteps = scheduler.timesteps
|
32 |
-
num_inference_steps = len(timesteps)
|
33 |
-
elif sigmas is not None:
|
34 |
-
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
35 |
-
timesteps = scheduler.timesteps
|
36 |
-
num_inference_steps = len(timesteps)
|
37 |
-
else:
|
38 |
-
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
39 |
-
timesteps = scheduler.timesteps
|
40 |
-
return timesteps, num_inference_steps
|
41 |
-
|
42 |
-
# FLUX pipeline function
|
43 |
-
@torch.inference_mode()
|
44 |
-
def flux_pipe_call_that_returns_an_iterable_of_images(
|
45 |
-
self,
|
46 |
-
prompt: Union[str, List[str]] = None,
|
47 |
-
prompt_2: Optional[Union[str, List[str]]] = None,
|
48 |
-
height: Optional[int] = None,
|
49 |
-
width: Optional[int] = None,
|
50 |
-
num_inference_steps: int = 28,
|
51 |
-
timesteps: List[int] = None,
|
52 |
-
guidance_scale: float = 3.5,
|
53 |
-
num_images_per_prompt: Optional[int] = 1,
|
54 |
-
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
55 |
-
latents: Optional[torch.FloatTensor] = None,
|
56 |
-
prompt_embeds: Optional[torch.FloatTensor] = None,
|
57 |
-
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
58 |
-
output_type: Optional[str] = "pil",
|
59 |
-
return_dict: bool = True,
|
60 |
-
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
61 |
-
max_sequence_length: int = 512,
|
62 |
-
good_vae: Optional[Any] = None,
|
63 |
-
):
|
64 |
-
height = height or self.default_sample_size * self.vae_scale_factor
|
65 |
-
width = width or self.default_sample_size * self.vae_scale_factor
|
66 |
-
|
67 |
-
# 1. Check inputs
|
68 |
-
self.check_inputs(
|
69 |
-
prompt,
|
70 |
-
prompt_2,
|
71 |
-
height,
|
72 |
-
width,
|
73 |
-
prompt_embeds=prompt_embeds,
|
74 |
-
pooled_prompt_embeds=pooled_prompt_embeds,
|
75 |
-
max_sequence_length=max_sequence_length,
|
76 |
-
)
|
77 |
-
|
78 |
-
self._guidance_scale = guidance_scale
|
79 |
-
self._joint_attention_kwargs = joint_attention_kwargs
|
80 |
-
self._interrupt = False
|
81 |
-
|
82 |
-
# 2. Define call parameters
|
83 |
-
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
84 |
-
device = self._execution_device
|
85 |
-
|
86 |
-
# 3. Encode prompt
|
87 |
-
lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
|
88 |
-
prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
|
89 |
-
prompt=prompt,
|
90 |
-
prompt_2=prompt_2,
|
91 |
-
prompt_embeds=prompt_embeds,
|
92 |
-
pooled_prompt_embeds=pooled_prompt_embeds,
|
93 |
-
device=device,
|
94 |
-
num_images_per_prompt=num_images_per_prompt,
|
95 |
-
max_sequence_length=max_sequence_length,
|
96 |
-
lora_scale=lora_scale,
|
97 |
-
)
|
98 |
-
# 4. Prepare latent variables
|
99 |
-
num_channels_latents = self.transformer.config.in_channels // 4
|
100 |
-
latents, latent_image_ids = self.prepare_latents(
|
101 |
-
batch_size * num_images_per_prompt,
|
102 |
-
num_channels_latents,
|
103 |
-
height,
|
104 |
-
width,
|
105 |
-
prompt_embeds.dtype,
|
106 |
-
device,
|
107 |
-
generator,
|
108 |
-
latents,
|
109 |
-
)
|
110 |
-
# 5. Prepare timesteps
|
111 |
-
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
112 |
-
image_seq_len = latents.shape[1]
|
113 |
-
mu = calculate_shift(
|
114 |
-
image_seq_len,
|
115 |
-
self.scheduler.config.base_image_seq_len,
|
116 |
-
self.scheduler.config.max_image_seq_len,
|
117 |
-
self.scheduler.config.base_shift,
|
118 |
-
self.scheduler.config.max_shift,
|
119 |
-
)
|
120 |
-
timesteps, num_inference_steps = retrieve_timesteps(
|
121 |
-
self.scheduler,
|
122 |
-
num_inference_steps,
|
123 |
-
device,
|
124 |
-
timesteps,
|
125 |
-
sigmas,
|
126 |
-
mu=mu,
|
127 |
-
)
|
128 |
-
self._num_timesteps = len(timesteps)
|
129 |
-
|
130 |
-
# Handle guidance
|
131 |
-
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
|
132 |
-
|
133 |
-
# 6. Denoising loop
|
134 |
-
for i, t in enumerate(timesteps):
|
135 |
-
if self.interrupt:
|
136 |
-
continue
|
137 |
-
|
138 |
-
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
139 |
-
|
140 |
-
noise_pred = self.transformer(
|
141 |
-
hidden_states=latents,
|
142 |
-
timestep=timestep / 1000,
|
143 |
-
guidance=guidance,
|
144 |
-
pooled_projections=pooled_prompt_embeds,
|
145 |
-
encoder_hidden_states=prompt_embeds,
|
146 |
-
txt_ids=text_ids,
|
147 |
-
img_ids=latent_image_ids,
|
148 |
-
joint_attention_kwargs=self.joint_attention_kwargs,
|
149 |
-
return_dict=False,
|
150 |
-
)[0]
|
151 |
-
# Yield intermediate result
|
152 |
-
latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
153 |
-
latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
154 |
-
image = self.vae.decode(latents_for_image, return_dict=False)[0]
|
155 |
-
yield self.image_processor.postprocess(image, output_type=output_type)[0]
|
156 |
-
|
157 |
-
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
158 |
-
torch.cuda.empty_cache()
|
159 |
-
|
160 |
-
# Final image using good_vae
|
161 |
-
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
162 |
-
latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
|
163 |
-
image = good_vae.decode(latents, return_dict=False)[0]
|
164 |
-
self.maybe_free_model_hooks()
|
165 |
-
torch.cuda.empty_cache()
|
166 |
-
yield self.image_processor.postprocess(image, output_type=output_type)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,7 +1,4 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
xformers
|
6 |
-
sentencepiece
|
7 |
-
git+https://github.com/huggingface/peft.git
|
|
|
1 |
+
requests
|
2 |
+
pillow
|
3 |
+
deep-translator
|
4 |
+
langdetect
|
|
|
|
|
|