Spaces:
Running
Running
File size: 9,917 Bytes
6381c79 f77813c 6381c79 f77813c 182f0d5 2c22ca3 ba5770d 182f0d5 6381c79 d527cc3 f77813c d527cc3 f77813c d527cc3 f77813c 6381c79 d527cc3 33da899 ba5770d 6381c79 182f0d5 6381c79 182f0d5 ba5770d 2c22ca3 182f0d5 ba5770d 081465c ba5770d 182f0d5 ba5770d 6381c79 ba5770d 6381c79 ba5770d 182f0d5 ba5770d 6381c79 ba5770d 081465c ba5770d f21463b 081465c 220ba3f 081465c f21463b 081465c f21463b 7eda457 ba5770d 6381c79 081465c ba5770d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import os
import sys
import torch
import gradio as gr
from PIL import Image
import numpy as np
from omegaconf import OmegaConf
import subprocess
from tqdm import tqdm
import requests
import spaces
import einops
import math
import random
def download_file(url, filename):
response = requests.get(url, stream=True)
total_size = int(response.headers.get('content-length', 0))
block_size = 1024
with open(filename, 'wb') as file, tqdm(
desc=filename,
total=total_size,
unit='iB',
unit_scale=True,
unit_divisor=1024,
) as progress_bar:
for data in response.iter_content(block_size):
size = file.write(data)
progress_bar.update(size)
def setup_environment():
if not os.path.exists("CCSR"):
print("Cloning CCSR repository...")
subprocess.run(["git", "clone", "-b", "dev", "https://github.com/camenduru/CCSR.git"])
os.chdir("CCSR")
sys.path.append(os.getcwd())
os.makedirs("weights", exist_ok=True)
if not os.path.exists("weights/real-world_ccsr.ckpt"):
print("Downloading model checkpoint...")
download_file(
"https://huggingface.co/camenduru/CCSR/resolve/main/real-world_ccsr.ckpt",
"weights/real-world_ccsr.ckpt"
)
else:
print("Model checkpoint already exists. Skipping download.")
setup_environment()
# Importing from the CCSR folder
from ldm.xformers_state import disable_xformers
from model.q_sampler import SpacedSampler
from model.ccsr_stage1 import ControlLDM
from utils.common import instantiate_from_config, load_state_dict
from utils.image import auto_resize
config = OmegaConf.load("configs/model/ccsr_stage2.yaml")
model = instantiate_from_config(config)
ckpt = torch.load("weights/real-world_ccsr.ckpt", map_location="cpu")
load_state_dict(model, ckpt, strict=True)
model.freeze()
model.to("cuda")
sampler = SpacedSampler(model, var_type="fixed_small")
@spaces.GPU
@torch.no_grad()
def process(
control_img: Image.Image,
num_samples: int,
sr_scale: float,
strength: float,
positive_prompt: str,
negative_prompt: str,
cfg_scale: float,
steps: int,
use_color_fix: bool,
seed: int,
tile_diffusion: bool,
tile_diffusion_size: int,
tile_diffusion_stride: int,
tile_vae: bool,
vae_encoder_tile_size: int,
vae_decoder_tile_size: int
):
print(
f"control image shape={control_img.size}\n"
f"num_samples={num_samples}, sr_scale={sr_scale}, strength={strength}\n"
f"positive_prompt='{positive_prompt}', negative_prompt='{negative_prompt}'\n"
f"cdf scale={cfg_scale}, steps={steps}, use_color_fix={use_color_fix}\n"
f"seed={seed}\n"
f"tile_diffusion={tile_diffusion}, tile_diffusion_size={tile_diffusion_size}, tile_diffusion_stride={tile_diffusion_stride}"
f"tile_vae={tile_vae}, vae_encoder_tile_size={vae_encoder_tile_size}, vae_decoder_tile_size={vae_decoder_tile_size}"
)
if seed == -1:
seed = random.randint(0, 2**32 - 1)
torch.manual_seed(seed)
if sr_scale != 1:
control_img = control_img.resize(
tuple(math.ceil(x * sr_scale) for x in control_img.size),
Image.BICUBIC
)
input_size = control_img.size
if not tile_diffusion:
control_img = auto_resize(control_img, 512)
else:
control_img = auto_resize(control_img, tile_diffusion_size)
control_img = control_img.resize(
tuple((s // 64 + 1) * 64 for s in control_img.size), Image.LANCZOS
)
control_img = np.array(control_img)
control = torch.tensor(control_img[None] / 255.0, dtype=torch.float32, device=model.device).clamp_(0, 1)
control = einops.rearrange(control, "n h w c -> n c h w").contiguous()
height, width = control.size(-2), control.size(-1)
model.control_scales = [strength] * 13
preds = []
for _ in tqdm(range(num_samples)):
shape = (1, 4, height // 8, width // 8)
x_T = torch.randn(shape, device=model.device, dtype=torch.float32)
if not tile_diffusion and not tile_vae:
samples = sampler.sample_ccsr(
steps=steps, t_max=0.6667, t_min=0.3333, shape=shape, cond_img=control,
positive_prompt=positive_prompt, negative_prompt=negative_prompt, x_T=x_T,
cfg_scale=cfg_scale,
color_fix_type="adain" if use_color_fix else "none"
)
else:
if tile_vae:
model._init_tiled_vae(encoder_tile_size=vae_encoder_tile_size, decoder_tile_size=vae_decoder_tile_size)
if tile_diffusion:
samples = sampler.sample_with_tile_ccsr(
tile_size=tile_diffusion_size, tile_stride=tile_diffusion_stride,
steps=steps, t_max=0.6667, t_min=0.3333, shape=shape, cond_img=control,
positive_prompt=positive_prompt, negative_prompt=negative_prompt, x_T=x_T,
cfg_scale=cfg_scale,
color_fix_type="adain" if use_color_fix else "none"
)
else:
samples = sampler.sample_ccsr(
steps=steps, t_max=0.6667, t_min=0.3333, shape=shape, cond_img=control,
positive_prompt=positive_prompt, negative_prompt=negative_prompt, x_T=x_T,
cfg_scale=cfg_scale,
color_fix_type="adain" if use_color_fix else "none"
)
x_samples = samples.clamp(0, 1)
x_samples = (einops.rearrange(x_samples, "b c h w -> b h w c") * 255).cpu().numpy().clip(0, 255).astype(np.uint8)
img = Image.fromarray(x_samples[0, ...]).resize(input_size, Image.LANCZOS)
preds.append(np.array(img))
return preds
def update_output_resolution(image):
if image is not None:
width, height = image.size
return f"Current resolution: {width}x{height}. Output resolution: {int(width*sr_scale.value)}x{int(height*sr_scale.value)}"
return "Upload an image to see the output resolution"
block = gr.Blocks().queue()
with block:
with gr.Row():
input_image = gr.Image(type="pil", label="Input Image")
with gr.Row():
sr_scale = gr.Slider(label="SR Scale", minimum=1, maximum=8, value=4, step=0.1, info="Super-resolution scale factor.")
output_resolution = gr.Markdown("Upload an image to see the output resolution")
with gr.Row():
run_button = gr.Button(value="Run")
with gr.Accordion("Options", open=False):
with gr.Column():
num_samples = gr.Slider(label="Number Of Samples", minimum=1, maximum=12, value=1, step=1, info="Number of output images to generate.")
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01, info="Strength of the control signal.")
positive_prompt = gr.Textbox(label="Positive Prompt", value="", info="Positive text prompt to guide the image generation.")
negative_prompt = gr.Textbox(
label="Negative Prompt",
value="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
info="Negative text prompt to avoid undesirable features."
)
cfg_scale = gr.Slider(label="Classifier Free Guidance Scale", minimum=0.1, maximum=30.0, value=1.0, step=0.1, info="Scale for classifier-free guidance.")
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=45, step=1, info="Number of diffusion steps.")
use_color_fix = gr.Checkbox(label="Use Color Correction", value=True, info="Apply color correction to the output image.")
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=231, info="Random seed for reproducibility. Set to -1 for a random seed.")
tile_diffusion = gr.Checkbox(label="Tile diffusion", value=False, info="Enable tiled diffusion for large images.")
tile_diffusion_size = gr.Slider(label="Tile diffusion size", minimum=512, maximum=1024, value=512, step=256, info="Size of each tile for tiled diffusion.")
tile_diffusion_stride = gr.Slider(label="Tile diffusion stride", minimum=256, maximum=512, value=256, step=128, info="Stride between tiles for tiled diffusion.")
tile_vae = gr.Checkbox(label="Tile VAE", value=True, info="Enable tiled VAE for large images.")
vae_encoder_tile_size = gr.Slider(label="Encoder tile size", minimum=512, maximum=5000, value=1024, step=256, info="Size of each tile for the VAE encoder.")
vae_decoder_tile_size = gr.Slider(label="Decoder tile size", minimum=64, maximum=512, value=224, step=128, info="Size of each tile for the VAE decoder.")
with gr.Column():
result_gallery = gr.Gallery(label="Output", show_label=False, elem_id="gallery")
inputs = [
input_image,
num_samples,
sr_scale,
strength,
positive_prompt,
negative_prompt,
cfg_scale,
steps,
use_color_fix,
seed,
tile_diffusion,
tile_diffusion_size,
tile_diffusion_stride,
tile_vae,
vae_encoder_tile_size,
vae_decoder_tile_size,
]
run_button.click(fn=process, inputs=inputs, outputs=[result_gallery])
# Update output resolution when image is uploaded or SR scale is changed
input_image.change(update_output_resolution, inputs=[input_image], outputs=[output_resolution])
sr_scale.change(update_output_resolution, inputs=[input_image], outputs=[output_resolution])
# Disable SR scale slider when no image is uploaded
input_image.change(
lambda x: gr.update(interactive=x is not None),
inputs=[input_image],
outputs=[sr_scale]
)
block.launch() |