Spaces:
Sleeping
Sleeping
File size: 14,677 Bytes
1b0b842 1d280b8 1b0b842 1d280b8 1b0b842 1d280b8 1b0b842 b416a31 1b0b842 b17f58c 1b0b842 b17f58c 1b0b842 a8b8b2c e5f089f 1b0b842 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
import os
import re
import time
import numpy as np
import requests
import torch
from typing import Optional, Tuple
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
from TTS.tts.layers.xtts.tokenizer import VoiceBpeTokenizer, basic_cleaners
from coqpit import Coqpit
from huggingface_hub import hf_hub_download, hf_hub_url
from tqdm import tqdm
def download_file_with_progress(url: str, destination: str, token: str = None):
"""
Downloads a file from a web URL with a progress bar. Supports Hugging Face API token for gated models.
:param url: The URL to download from.
:param destination: The destination file path to save the downloaded file.
:param token: Hugging Face API token (optional). If not provided, the HF_API_TOKEN from the environment will be used.
"""
# Use the token passed or fetch from environment variable
if token is None:
token = os.getenv("HF_TOKEN")
# Define headers for the request
headers = {}
if token:
headers['Authorization'] = f'Bearer {token}'
# Streaming GET request with headers
response = requests.get(url, stream=True, headers=headers)
# Total size in bytes, set to zero if missing
total_size = int(response.headers.get('content-length', 0))
# Using tqdm to display progress
with open(destination, 'wb') as file, tqdm(desc=destination, total=total_size, unit='B', unit_scale=True,
unit_divisor=1024) as bar:
for data in response.iter_content(chunk_size=1024):
size = file.write(data)
bar.update(size)
class VoiceBambaraTextPreprocessor:
def preprocess_batch(self, texts):
return [self.preprocess(text) for text in texts]
def preprocess(self, text: str) -> str:
text = text.lower()
text = self.expand_number(text)
text = self.transliterate_bambara(text)
return text
def transliterate_bambara(self, text):
"""
Transliterate Bambara text using a specified mapping of special characters.
Parameters:
- text (str): The original Bambara text.
Returns:
- str: The transliterated text.
"""
bambara_transliteration = {
'ɲ': 'ny',
'ɛ': 'è',
'ɔ': 'o',
'ŋ': 'ng',
'ɟ': 'j',
'ʔ': "'",
'ɣ': 'gh',
'ʃ': 'sh',
'ߒ': 'n',
'ߎ': "u",
}
# Perform the transliteration
transliterated_text = "".join(bambara_transliteration.get(char, char) for char in text)
return transliterated_text
def expand_number(self, text):
"""
Normalize Bambara text for TTS by replacing numerical figures with their word equivalents.
Args:
text (str): The text to be normalized.
Returns:
str: The normalized Bambara text.
"""
# A regex pattern to match all numbers
number_pattern = re.compile(r'\b\d+\b')
# Function to replace each number with its Bambara text
def replace_number_with_text(match):
number = int(match.group())
return self.number_to_bambara(number)
# Replace each number in the text with its Bambara word equivalent
normalized_text = number_pattern.sub(replace_number_with_text, text)
return normalized_text
def number_to_bambara(self, n):
"""
Convert a number into its textual representation in Bambara using recursion.
Args:
n (int): The number to be converted.
Returns:
str: The number expressed in Bambara text.
Examples:
>>> number_to_bambara(123)
'kɛmɛ ni mugan ni saba'
Notes:
This function assumes that 'n' is a non-negative integer.
"""
# Bambara numbering rules
units = ["", "kɛlɛn", "fila", "saba", "naani", "duuru", "wɔrɔ", "wòlonwula", "sɛɛgin", "kɔnɔntɔn"]
tens = ["", "tan", "mugan", "bisaba", "binaani", "biduuru", "biwɔrɔ", "biwòlonfila", "bisɛɛgin", "bikɔnɔntɔn"]
hundreds = ["", "kɛmɛ"]
thousands = ["", "waga"]
millions = ["", "milyɔn"]
# Handle zero explicitly
if n == 0:
return "" # bambara does not support zero
if n < 10:
return units[n]
elif n < 100:
return tens[n // 10] + (" ni " + self.number_to_bambara(n % 10) if n % 10 > 0 else "")
elif n < 1000:
return hundreds[1] + (" " + self.number_to_bambara(n // 100) if n >= 200 else "") + (
" ni " + self.number_to_bambara(n % 100) if n % 100 > 0 else "")
elif n < 1_000_000:
return thousands[1] + " " + self.number_to_bambara(n // 1000) + (
" ni " + self.number_to_bambara(n % 1000) if n % 1000 > 0 else "")
else:
return millions[1] + " " + self.number_to_bambara(n // 1_000_000) + (
" ni " + self.number_to_bambara(n % 1_000_000) if n % 1_000_000 > 0 else "")
class BambaraTokenizer(VoiceBpeTokenizer):
"""
A tokenizer for the Bambara language that extends the VoiceBpeTokenizer.
Attributes:
preprocessor: An instance of VoiceBambaraTextPreprocessor for text preprocessing.
char_limits: A dictionary to hold character limits for languages.
"""
def __init__(self, vocab_file: Optional[str] = None):
"""
Initializes the BambaraTokenizer with a given vocabulary file.
Args:
vocab_file: The path to the vocabulary file, defaults to None.
"""
super().__init__(vocab_file)
self.preprocessor = VoiceBambaraTextPreprocessor()
self.char_limits['bm'] = 200 # Set character limit for Bambara language
def preprocess_text(self, txt: str, lang: str) -> str:
"""
Preprocesses the input text based on the language.
Args:
txt: The text to preprocess.
lang: The language code of the text.
Returns:
The preprocessed text.
"""
# Delegate preprocessing to the parent class for non-Bambara languages
if lang != "bm":
return super().preprocess_text(txt, lang)
# Apply Bambara-specific preprocessing
txt = self.preprocessor.preprocess(txt)
txt = basic_cleaners(txt)
return txt
class BambaraXtts(Xtts):
"""
A class for the Bambara language that extends the Xtts class.
Attributes:
tokenizer: An instance of BambaraTokenizer.
"""
def __init__(self, config: Coqpit):
"""
Initializes the BambaraXtts with the provided configuration.
Args:
config: An instance of Coqpit containing configuration settings.
"""
super().__init__(config)
self.tokenizer = BambaraTokenizer() # Initialize tokenizer for Bambara
self.init_models()
@classmethod
def init_from_config(cls, config: "XttsConfig", **kwargs) -> "BambaraXtts":
"""
Class method to create an instance of BambaraXtts from a configuration object.
Args:
config: An instance of XttsConfig containing configuration settings.
**kwargs: Additional keyword arguments.
Returns:
An instance of BambaraXtts.
"""
return cls(config)
class BambaraTTS:
"""
Bambara Text-to-Speech (TTS) class that initializes and uses a TTS model for the Bambara language.
Attributes:
language_code (str): The ISO language code for Bambara.
checkpoint_repo_or_dir (str): URL or local path to the model checkpoint directory.
local_dir (str): The directory to store downloaded checkpoints.
paths (dict): A dictionary of paths to model components.
config (XttsConfig): Configuration object for the TTS model.
model (BambaraXtts): The TTS model instance.
"""
def __init__(self, checkpoint_repo_or_dir: str, local_dir: Optional[str] = None):
"""
Initialize the BambaraTTS instance.
Args:
checkpoint_repo_or_dir: A string that represents either a Hugging Face hub repository
or a local directory where the TTS model checkpoint is located.
local_dir: An optional string representing a local directory path where model checkpoints
will be downloaded. If not specified, a default local directory is used based
on `checkpoint_repo_or_dir`.
The initialization process involves setting up local directories for model components,
ensuring the model checkpoint is available, and loading the model configuration and tokenizer.
"""
# Set the language code for Bambara
self.language_code = 'bm'
# Store the checkpoint location and local directory path
self.checkpoint_repo_or_dir = checkpoint_repo_or_dir
# If no local directory is provided, use the default based on the checkpoint
self.local_dir = local_dir if local_dir else self.default_local_dir(checkpoint_repo_or_dir)
# Initialize the paths for model components
self.paths = self.init_paths(self.local_dir)
# Ensure the model checkpoint is available locally
self.ensure_checkpoint_is_downloaded()
# Load the model configuration from a JSON file
self.config = XttsConfig()
self.config.load_json(self.paths['config.json'])
# Initialize the TTS model with the loaded configuration
self.model = BambaraXtts(self.config)
# Set up the tokenizer for the model, using the vocabulary file path
self.model.tokenizer = BambaraTokenizer(vocab_file=self.paths['vocab.json'])
# Load the model checkpoint into the initialized model
self.model.load_checkpoint(
self.config,
vocab_path="fake_vocab.json",
# The 'fake_vocab.json' is specified because the base model class might
# attempt to override our tokenizer if a vocab file is present
checkpoint_dir=self.local_dir,
# use_deepspeed=torch.cuda.is_available() # Utilize DeepSpeed if CUDA is available
use_deepspeed=False # disable because make it fails on huggingface space
)
# Move the model to GPU if CUDA is available
if torch.cuda.is_available():
self.model.cuda()
self.log_tokenizer()
def ensure_checkpoint_is_downloaded(self):
"""
Ensures that the model checkpoint is downloaded and available locally.
"""
if os.path.exists(self.checkpoint_repo_or_dir):
return
os.makedirs(self.local_dir, exist_ok=True)
self.log("Downloading checkpoint from the hub...")
for filename, filepath in self.paths.items():
if os.path.exists(filepath):
self.log(f"File {filepath} already exists. Skipping...")
continue
file_url = hf_hub_url(repo_id=self.checkpoint_repo_or_dir, filename=filename)
self.log(f"Downloading {filename} from {file_url}")
download_file_with_progress(file_url, filepath)
self.log("Checkpoint downloaded successfully!")
def default_local_dir(self, checkpoint_repo_or_dir: str) -> str:
"""
Generates a default local directory path for storing the model checkpoint.
Args:
checkpoint_repo_or_dir: The original checkpoint repository or directory path.
Returns:
The default local directory path.
"""
if os.path.exists(checkpoint_repo_or_dir):
return checkpoint_repo_or_dir
model_path = f"models--{checkpoint_repo_or_dir.replace('/', '--')}"
local_dir = os.path.join(os.path.expanduser('~'), "bambara_tts", model_path)
return local_dir.lower()
@staticmethod
def init_paths(local_dir: str) -> dict:
"""
Initializes paths to various model components based on the local directory.
Args:
local_dir: The local directory where model components are stored.
Returns:
A dictionary with keys as component names and values as file paths.
"""
components = ['model.pth', 'config.json', 'vocab.json', 'dvae.pth', 'mel_stats.pth']
return {name: os.path.join(local_dir, name) for name in components}
def text_to_speech(
self,
text: str,
speaker_reference_wav_path: Optional[str] = None,
temperature: Optional[float] = 0.1,
enable_text_splitting: bool = False
) -> Tuple[int, torch.Tensor]:
"""
Converts text into speech audio.
Args:
text: The input text to be converted into speech.
speaker_reference_wav_path: A path to a reference WAV file for the speaker.
temperature: The temperature parameter for sampling.
enable_text_splitting: Flag to enable or disable text splitting.
Returns:
A tuple containing the sampling rate and the generated audio tensor.
"""
if speaker_reference_wav_path is None:
speaker_reference_wav_path = "./audios/male_2.wav"
self.log("Using default speaker reference ./audios/male_2.wav.")
self.log("Computing speaker latents...")
gpt_cond_latent, speaker_embedding = self.model.get_conditioning_latents(
audio_path=[speaker_reference_wav_path]
)
self.log("Starting inference...")
start_time = time.time()
out = self.model.inference(
text,
self.language_code,
gpt_cond_latent,
speaker_embedding,
temperature=temperature,
enable_text_splitting=enable_text_splitting
)
end_time = time.time()
audio = torch.tensor(out["wav"]).unsqueeze(0).cpu()
sampling_rate = torch.tensor(self.config.model_args.output_sample_rate).cpu().item()
self.log(f"Speech generated in {end_time - start_time:.2f} seconds.")
return sampling_rate, audio
def log(self, message: str):
"""
Logs a message to the console with a uniform format.
Args:
message: The message to be logged.
"""
print(f"[BambaraTTS] {message}")
def log_tokenizer(self):
"""
Logs the tokenizer information.
"""
self.log(f"Tokenizer: {self.model.tokenizer}")
|