fasd / tddfa /models /resnet.py
ozyman's picture
added depth model
ddadf19
#!/usr/bin/env python3
# coding: utf-8
import torch.nn as nn
__all__ = ['ResNet', 'resnet22']
def conv3x3(in_planes, out_planes, stride=1):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
"""Another Strucutre used in caffe-resnet25"""
def __init__(self, block, layers, num_classes=62, num_landmarks=136, input_channel=3, fc_flg=False):
self.inplanes = 64
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(input_channel, 32, kernel_size=5, stride=2, padding=2, bias=False)
self.bn1 = nn.BatchNorm2d(32) # 32 is input channels number
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(64)
self.relu2 = nn.ReLU(inplace=True)
# self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 128, layers[0], stride=2)
self.layer2 = self._make_layer(block, 256, layers[1], stride=2)
self.layer3 = self._make_layer(block, 512, layers[2], stride=2)
self.conv_param = nn.Conv2d(512, num_classes, 1)
# self.conv_lm = nn.Conv2d(512, num_landmarks, 1)
self.avgpool = nn.AdaptiveAvgPool2d(1)
# self.fc = nn.Linear(512 * block.expansion, num_classes)
self.fc_flg = fc_flg
# parameter initialization
for m in self.modules():
if isinstance(m, nn.Conv2d):
# 1.
# n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
# m.weight.data.normal_(0, math.sqrt(2. / n))
# 2. kaiming normal
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu1(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu2(x)
# x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
# if self.fc_flg:
# x = self.avgpool(x)
# x = x.view(x.size(0), -1)
# x = self.fc(x)
# else:
xp = self.conv_param(x)
xp = self.avgpool(xp)
xp = xp.view(xp.size(0), -1)
# xl = self.conv_lm(x)
# xl = self.avgpool(xl)
# xl = xl.view(xl.size(0), -1)
return xp # , xl
def resnet22(**kwargs):
model = ResNet(
BasicBlock,
[3, 4, 3],
num_landmarks=kwargs.get('num_landmarks', 136),
input_channel=kwargs.get('input_channel', 3),
fc_flg=False
)
return model
def main():
pass
if __name__ == '__main__':
main()