|
|
|
|
|
|
|
import torch.nn as nn |
|
|
|
__all__ = ['ResNet', 'resnet22'] |
|
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1): |
|
"3x3 convolution with padding" |
|
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, |
|
padding=1, bias=False) |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
expansion = 1 |
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None): |
|
super(BasicBlock, self).__init__() |
|
self.conv1 = conv3x3(inplanes, planes, stride) |
|
self.bn1 = nn.BatchNorm2d(planes) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.conv2 = conv3x3(planes, planes) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
out += residual |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class ResNet(nn.Module): |
|
"""Another Strucutre used in caffe-resnet25""" |
|
|
|
def __init__(self, block, layers, num_classes=62, num_landmarks=136, input_channel=3, fc_flg=False): |
|
self.inplanes = 64 |
|
super(ResNet, self).__init__() |
|
self.conv1 = nn.Conv2d(input_channel, 32, kernel_size=5, stride=2, padding=2, bias=False) |
|
self.bn1 = nn.BatchNorm2d(32) |
|
self.relu1 = nn.ReLU(inplace=True) |
|
|
|
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1, bias=False) |
|
self.bn2 = nn.BatchNorm2d(64) |
|
self.relu2 = nn.ReLU(inplace=True) |
|
|
|
|
|
|
|
self.layer1 = self._make_layer(block, 128, layers[0], stride=2) |
|
self.layer2 = self._make_layer(block, 256, layers[1], stride=2) |
|
self.layer3 = self._make_layer(block, 512, layers[2], stride=2) |
|
|
|
self.conv_param = nn.Conv2d(512, num_classes, 1) |
|
|
|
self.avgpool = nn.AdaptiveAvgPool2d(1) |
|
|
|
self.fc_flg = fc_flg |
|
|
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
|
|
|
|
|
|
|
|
|
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') |
|
elif isinstance(m, nn.BatchNorm2d): |
|
m.weight.data.fill_(1) |
|
m.bias.data.zero_() |
|
|
|
def _make_layer(self, block, planes, blocks, stride=1): |
|
downsample = None |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
nn.Conv2d(self.inplanes, planes * block.expansion, |
|
kernel_size=1, stride=stride, bias=False), |
|
nn.BatchNorm2d(planes * block.expansion), |
|
) |
|
|
|
layers = [] |
|
layers.append(block(self.inplanes, planes, stride, downsample)) |
|
self.inplanes = planes * block.expansion |
|
for i in range(1, blocks): |
|
layers.append(block(self.inplanes, planes)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu1(x) |
|
|
|
x = self.conv2(x) |
|
x = self.bn2(x) |
|
x = self.relu2(x) |
|
|
|
|
|
|
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
|
|
|
|
|
|
|
|
|
|
|
|
xp = self.conv_param(x) |
|
xp = self.avgpool(xp) |
|
xp = xp.view(xp.size(0), -1) |
|
|
|
|
|
|
|
|
|
|
|
return xp |
|
|
|
|
|
def resnet22(**kwargs): |
|
model = ResNet( |
|
BasicBlock, |
|
[3, 4, 3], |
|
num_landmarks=kwargs.get('num_landmarks', 136), |
|
input_channel=kwargs.get('input_channel', 3), |
|
fc_flg=False |
|
) |
|
return model |
|
|
|
|
|
def main(): |
|
pass |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|