pablovela5620's picture
initial commit with working dpvo
899c526
import numpy as np
import os.path as osp
import torch
from ..lietorch import SE3
from scipy.spatial.transform import Rotation
def parse_list(filepath, skiprows=0):
""" read list data """
data = np.loadtxt(filepath, delimiter=' ', dtype=np.unicode_, skiprows=skiprows)
return data
def associate_frames(tstamp_image, tstamp_depth, tstamp_pose, max_dt=1.0):
""" pair images, depths, and poses """
associations = []
for i, t in enumerate(tstamp_image):
if tstamp_pose is None:
j = np.argmin(np.abs(tstamp_depth - t))
if (np.abs(tstamp_depth[j] - t) < max_dt):
associations.append((i, j))
else:
j = np.argmin(np.abs(tstamp_depth - t))
k = np.argmin(np.abs(tstamp_pose - t))
if (np.abs(tstamp_depth[j] - t) < max_dt) and \
(np.abs(tstamp_pose[k] - t) < max_dt):
associations.append((i, j, k))
return associations
def loadtum(datapath, frame_rate=-1):
""" read video data in tum-rgbd format """
if osp.isfile(osp.join(datapath, 'groundtruth.txt')):
pose_list = osp.join(datapath, 'groundtruth.txt')
elif osp.isfile(osp.join(datapath, 'pose.txt')):
pose_list = osp.join(datapath, 'pose.txt')
else:
return None, None, None, None
image_list = osp.join(datapath, 'rgb.txt')
depth_list = osp.join(datapath, 'depth.txt')
calib_path = osp.join(datapath, 'calibration.txt')
intrinsic = None
if osp.isfile(calib_path):
intrinsic = np.loadtxt(calib_path, delimiter=' ')
intrinsic = intrinsic.astype(np.float64)
image_data = parse_list(image_list)
depth_data = parse_list(depth_list)
pose_data = parse_list(pose_list, skiprows=1)
pose_vecs = pose_data[:,1:].astype(np.float64)
tstamp_image = image_data[:,0].astype(np.float64)
tstamp_depth = depth_data[:,0].astype(np.float64)
tstamp_pose = pose_data[:,0].astype(np.float64)
associations = associate_frames(tstamp_image, tstamp_depth, tstamp_pose)
# print(len(tstamp_image))
# print(len(associations))
indicies = range(len(associations))[::5]
# indicies = [ 0 ]
# for i in range(1, len(associations)):
# t0 = tstamp_image[associations[indicies[-1]][0]]
# t1 = tstamp_image[associations[i][0]]
# if t1 - t0 > 1.0 / frame_rate:
# indicies += [ i ]
images, poses, depths, intrinsics, tstamps = [], [], [], [], []
for ix in indicies:
(i, j, k) = associations[ix]
images += [ osp.join(datapath, image_data[i,1]) ]
depths += [ osp.join(datapath, depth_data[j,1]) ]
poses += [ pose_vecs[k] ]
tstamps += [ tstamp_image[i] ]
if intrinsic is not None:
intrinsics += [ intrinsic ]
return images, depths, poses, intrinsics, tstamps
def all_pairs_distance_matrix(poses, beta=2.5):
""" compute distance matrix between all pairs of poses """
poses = np.array(poses, dtype=np.float32)
poses[:,:3] *= beta # scale to balence rot + trans
poses = SE3(torch.from_numpy(poses))
r = (poses[:,None].inv() * poses[None,:]).log()
return r.norm(dim=-1).cpu().numpy()
def pose_matrix_to_quaternion(pose):
""" convert 4x4 pose matrix to (t, q) """
q = Rotation.from_matrix(pose[:3, :3]).as_quat()
return np.concatenate([pose[:3, 3], q], axis=0)
def compute_distance_matrix_flow(poses, disps, intrinsics):
""" compute flow magnitude between all pairs of frames """
if not isinstance(poses, SE3):
poses = torch.from_numpy(poses).float().cuda()[None]
poses = SE3(poses).inv()
disps = torch.from_numpy(disps).float().cuda()[None]
intrinsics = torch.from_numpy(intrinsics).float().cuda()[None]
N = poses.shape[1]
ii, jj = torch.meshgrid(torch.arange(N), torch.arange(N))
ii = ii.reshape(-1).cuda()
jj = jj.reshape(-1).cuda()
MAX_FLOW = 100.0
matrix = np.zeros((N, N), dtype=np.float32)
s = 2048
for i in range(0, ii.shape[0], s):
flow1, val1 = pops.induced_flow(poses, disps, intrinsics, ii[i:i+s], jj[i:i+s])
flow2, val2 = pops.induced_flow(poses, disps, intrinsics, jj[i:i+s], ii[i:i+s])
flow = torch.stack([flow1, flow2], dim=2)
val = torch.stack([val1, val2], dim=2)
mag = flow.norm(dim=-1).clamp(max=MAX_FLOW)
mag = mag.view(mag.shape[1], -1)
val = val.view(val.shape[1], -1)
mag = (mag * val).mean(-1) / val.mean(-1)
mag[val.mean(-1) < 0.7] = np.inf
i1 = ii[i:i+s].cpu().numpy()
j1 = jj[i:i+s].cpu().numpy()
matrix[i1, j1] = mag.cpu().numpy()
return matrix
def compute_distance_matrix_flow2(poses, disps, intrinsics, beta=0.4):
""" compute flow magnitude between all pairs of frames """
# if not isinstance(poses, SE3):
# poses = torch.from_numpy(poses).float().cuda()[None]
# poses = SE3(poses).inv()
# disps = torch.from_numpy(disps).float().cuda()[None]
# intrinsics = torch.from_numpy(intrinsics).float().cuda()[None]
N = poses.shape[1]
ii, jj = torch.meshgrid(torch.arange(N), torch.arange(N))
ii = ii.reshape(-1)
jj = jj.reshape(-1)
MAX_FLOW = 128.0
matrix = np.zeros((N, N), dtype=np.float32)
s = 2048
for i in range(0, ii.shape[0], s):
flow1a, val1a = pops.induced_flow(poses, disps, intrinsics, ii[i:i+s], jj[i:i+s], tonly=True)
flow1b, val1b = pops.induced_flow(poses, disps, intrinsics, ii[i:i+s], jj[i:i+s])
flow2a, val2a = pops.induced_flow(poses, disps, intrinsics, jj[i:i+s], ii[i:i+s], tonly=True)
flow2b, val2b = pops.induced_flow(poses, disps, intrinsics, ii[i:i+s], jj[i:i+s])
flow1 = flow1a + beta * flow1b
val1 = val1a * val2b
flow2 = flow2a + beta * flow2b
val2 = val2a * val2b
flow = torch.stack([flow1, flow2], dim=2)
val = torch.stack([val1, val2], dim=2)
mag = flow.norm(dim=-1).clamp(max=MAX_FLOW)
mag = mag.view(mag.shape[1], -1)
val = val.view(val.shape[1], -1)
mag = (mag * val).mean(-1) / val.mean(-1)
mag[val.mean(-1) < 0.8] = np.inf
i1 = ii[i:i+s].cpu().numpy()
j1 = jj[i:i+s].cpu().numpy()
matrix[i1, j1] = mag.cpu().numpy()
return matrix