File size: 5,249 Bytes
0e4dfc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import gradio as gr
import numpy as np

try:
    import spaces  # type: ignore

    IN_SPACES = True
except ImportError:
    print("Not running on Zero")
    IN_SPACES = False
import torch

from monopriors.relative_depth_models import (
    DepthAnythingV2Predictor,
    RelativeDepthPrediction,
    UniDepthRelativePredictor,
    get_relative_predictor,
    RELATIVE_PREDICTORS,
)
from monopriors.relative_depth_models.base_relative_depth import BaseRelativePredictor
from monopriors.rr_logging_utils import (
    log_relative_pred,
    create_depth_comparison_blueprint,
)
import rerun as rr
from gradio_rerun import Rerun
from pathlib import Path
from typing import Literal, get_args
import gc

from jaxtyping import UInt8

title = "# Depth Comparison"
description1 = """Demo to help compare different depth models. Including both Scale | Shift Invariant and Metric Depth types."""
description2 = """Invariant models mean they have no true scale and are only relative, where as Metric models have a true scale and are absolute (meters)."""
model_load_status: str = "Models loaded and ready to use!"
DEVICE: Literal["cuda"] | Literal["cpu"] = (
    "cuda" if torch.cuda.is_available() else "cpu"
)
if gr.NO_RELOAD:
    MODEL_1 = DepthAnythingV2Predictor(device=DEVICE)
    MODEL_2 = UniDepthRelativePredictor(device=DEVICE)


def predict_depth(
    model: BaseRelativePredictor, rgb: UInt8[np.ndarray, "h w 3"]
) -> RelativeDepthPrediction:
    model.set_model_device(device=DEVICE)
    relative_pred: RelativeDepthPrediction = model(rgb, None)
    return relative_pred


if IN_SPACES:
    predict_depth = spaces.GPU(predict_depth)
    # remove any model that fails on zerogpu spaces


def load_models(
    model_1: RELATIVE_PREDICTORS,
    model_2: RELATIVE_PREDICTORS,
    progress=gr.Progress(),
) -> str:
    global MODEL_1, MODEL_2
    # delete the previous models and clear gpu memory
    if "MODEL_1" in globals():
        del MODEL_1
    if "MODEL_2" in globals():
        del MODEL_2
    torch.cuda.empty_cache()
    gc.collect()

    progress(0, desc="Loading Models please wait...")

    models: list[int] = [model_1, model_2]
    loaded_models = []

    for model in models:
        loaded_models.append(get_relative_predictor(model)(device=DEVICE))

        progress(0.5, desc=f"Loaded {model}")

    progress(1, desc="Models Loaded")
    MODEL_1, MODEL_2 = loaded_models

    return model_load_status


@rr.thread_local_stream("depth")
def on_submit(rgb: UInt8[np.ndarray, "h w 3"]):
    stream: rr.BinaryStream = rr.binary_stream()
    models_list = [MODEL_1, MODEL_2]
    blueprint = create_depth_comparison_blueprint(models_list)
    rr.send_blueprint(blueprint)
    try:
        for model in models_list:
            # get the name of the model
            parent_log_path = Path(f"{model.__class__.__name__}")
            rr.log(f"{parent_log_path}", rr.ViewCoordinates.RDF, timeless=True)

            relative_pred: RelativeDepthPrediction = predict_depth(model, rgb)

            log_relative_pred(
                parent_log_path=parent_log_path,
                relative_pred=relative_pred,
                rgb_hw3=rgb,
            )

            yield stream.read()
    except Exception as e:
        raise gr.Error(f"Error with model {model.__class__.__name__}: {e}")


with gr.Blocks() as demo:
    gr.Markdown(title)
    gr.Markdown(description1)
    gr.Markdown(description2)
    gr.Markdown("### Depth Prediction demo")

    with gr.Row():
        input_image = gr.Image(
            label="Input Image",
            type="numpy",
            height=300,
        )
        with gr.Column():
            gr.Radio(
                choices=["Scale | Shift Invariant", "Metric (TODO)"],
                label="Depth Type",
                value="Scale | Shift Invariant",
                interactive=True,
            )
            with gr.Row():
                model_1_dropdown = gr.Dropdown(
                    choices=list(get_args(RELATIVE_PREDICTORS)),
                    label="Model1",
                    value="DepthAnythingV2Predictor",
                )
                model_2_dropdown = gr.Dropdown(
                    choices=list(get_args(RELATIVE_PREDICTORS)),
                    label="Model2",
                    value="UniDepthRelativePredictor",
                )
            model_status = gr.Textbox(
                label="Model Status",
                value=model_load_status,
                interactive=False,
            )

    with gr.Row():
        submit = gr.Button(value="Compute Depth")
        load_models_btn = gr.Button(value="Load Models")
    rr_viewer = Rerun(streaming=True, height=800)

    submit.click(
        on_submit,
        inputs=[input_image],
        outputs=[rr_viewer],
    )

    load_models_btn.click(
        load_models,
        inputs=[model_1_dropdown, model_2_dropdown],
        outputs=[model_status],
    )

    examples_paths = Path("examples").glob("*.jpeg")
    examples_list = sorted([str(path) for path in examples_paths])
    examples = gr.Examples(
        examples=examples_list,
        inputs=[input_image],
        outputs=[rr_viewer],
        fn=on_submit,
        cache_examples=False,
    )

if __name__ == "__main__":
    demo.launch()