bstraehle commited on
Commit
b12409c
·
1 Parent(s): 55b9a66

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -23,18 +23,18 @@ template = """Use the following pieces of context to answer the question at the
23
  QA_CHAIN_PROMPT = PromptTemplate(input_variables = ["context", "question"], template = template)
24
 
25
  CHROMA_DIR = "docs/chroma/"
26
- YOUTUBE_DIR = "docs/youtube/"
27
 
28
- MODEL_NAME = "gpt-4"
29
 
30
  def invoke(openai_api_key, youtube_url, process_video, prompt):
31
  openai.api_key = openai_api_key
32
  if (process_video):
33
  if (os.path.isdir(CHROMA_DIR)):
34
- os.listdir(CHROMA_DIR)
35
  shutil.rmtree(CHROMA_DIR)
36
  if (os.path.isdir(YOUTUBE_DIR)):
37
- os.listdir(YOUTUBE_DIR)
38
  shutil.rmtree(YOUTUBE_DIR)
39
  loader = GenericLoader(YoutubeAudioLoader([youtube_url], YOUTUBE_DIR), OpenAIWhisperParser())
40
  docs = loader.load()
@@ -43,9 +43,9 @@ def invoke(openai_api_key, youtube_url, process_video, prompt):
43
  vector_db = Chroma.from_documents(documents = splits, embedding = OpenAIEmbeddings(), persist_directory = CHROMA_DIR)
44
  else:
45
  if (os.path.isdir(CHROMA_DIR)):
46
- os.listdir(CHROMA_DIR)
47
  if (os.path.isdir(YOUTUBE_DIR)):
48
- os.listdir(YOUTUBE_DIR)
49
  vector_db = Chroma(persist_directory = CHROMA_DIR, embedding_function = OpenAIEmbeddings())
50
  llm = ChatOpenAI(model_name = MODEL_NAME, temperature = 0)
51
  qa_chain = RetrievalQA.from_chain_type(llm, retriever = vector_db.as_retriever(), return_source_documents = True, chain_type_kwargs = {"prompt": QA_CHAIN_PROMPT})
 
23
  QA_CHAIN_PROMPT = PromptTemplate(input_variables = ["context", "question"], template = template)
24
 
25
  CHROMA_DIR = "docs/chroma/"
26
+ YOUTUBE_DIR = "docs/youtube/"
27
 
28
+ MODEL_NAME = "gpt-4"
29
 
30
  def invoke(openai_api_key, youtube_url, process_video, prompt):
31
  openai.api_key = openai_api_key
32
  if (process_video):
33
  if (os.path.isdir(CHROMA_DIR)):
34
+ print(os.listdir(CHROMA_DIR))
35
  shutil.rmtree(CHROMA_DIR)
36
  if (os.path.isdir(YOUTUBE_DIR)):
37
+ print(os.listdir(YOUTUBE_DIR))
38
  shutil.rmtree(YOUTUBE_DIR)
39
  loader = GenericLoader(YoutubeAudioLoader([youtube_url], YOUTUBE_DIR), OpenAIWhisperParser())
40
  docs = loader.load()
 
43
  vector_db = Chroma.from_documents(documents = splits, embedding = OpenAIEmbeddings(), persist_directory = CHROMA_DIR)
44
  else:
45
  if (os.path.isdir(CHROMA_DIR)):
46
+ print(os.listdir(CHROMA_DIR))
47
  if (os.path.isdir(YOUTUBE_DIR)):
48
+ print(os.listdir(YOUTUBE_DIR))
49
  vector_db = Chroma(persist_directory = CHROMA_DIR, embedding_function = OpenAIEmbeddings())
50
  llm = ChatOpenAI(model_name = MODEL_NAME, temperature = 0)
51
  qa_chain = RetrievalQA.from_chain_type(llm, retriever = vector_db.as_retriever(), return_source_documents = True, chain_type_kwargs = {"prompt": QA_CHAIN_PROMPT})