foodvision_mini / app.py
Mezei Dragos
first commit
72e82be
import gradio as gr
import os
import torch
from model import create_effnetb2_model
from timeit import default_timer as timer
from typing import Tuple, Dict
class_names = ['pizza', 'steak', 'sushi']
effnetb2, effnetb2_transforms = create_effnetb2_model(
num_classes=3
)
effnetb2.load_state_dict(
torch.load(
f="09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pt",
map_location=torch.device('cpu'),
)
)
def predict(img) -> Tuple[Dict, float]:
start_time = timer()
img = effnetb2_transforms(img).unsqueeze(0)
effnetb2.eval()
with torch.inference_mode():
pred_probs = torch.softmax(effnetb2(img), dim=1)
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
pred_time = round(timer() - start_time, 5)
return pred_labels_and_probs, pred_time
title = "FoodVision Mini"
description = "An EfficientNetB2 feature extractor computer vision model to classify images of food."
article = "Created at pytorch tutorial."
example_list = [["examples/" + example] for example in os.listdir("examples")]
demo = gr.Interface(fn=predict,
inputs=gr.Image(type="pil"),
outputs=[gr.Label(num_top_classes=3, label="Predictions"),
gr.Number(label="Prediction time (s)")],
examples=example_list,
title=title,
description=description,
article=article)
demo.launch()