Spaces:
Running
Running
import gradio as gr | |
from transformers import TrOCRProcessor, VisionEncoderDecoderModel | |
import requests | |
from PIL import Image | |
processor = TrOCRProcessor.from_pretrained("paran3xus/typress_ocr") | |
model = VisionEncoderDecoderModel.from_pretrained('paran3xus/typress_ocr') | |
# load image examples | |
urls = ["https://huggingface.co/spaces/paran3xus/typress_ocr_space/resolve/main/test_img/1.png", "https://huggingface.co/spaces/paran3xus/typress_ocr_space/resolve/main/test_img/2.png", "https://huggingface.co/spaces/paran3xus/typress_ocr_space/resolve/main/test_img/3.png"] | |
for idx, url in enumerate(urls): | |
image = Image.open(requests.get(url, stream=True).raw) | |
image.save(f"image_{idx}.png") | |
def process_image(image): | |
# prepare image | |
pixel_values = processor(image, return_tensors="pt").pixel_values | |
# generate (no beam search) | |
generated_ids = model.generate(pixel_values) | |
# decode | |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
return generated_text | |
title = "Interactive demo: Typress OCR" | |
description = "Demo for Typress OCR, an TrOCR model for Typst Mathematical Expressions Recognition. To use it, simply upload a image or use one of the example images below and click 'submit'. Results will show up in a few seconds." | |
article = "<p style='text-align: center'><a href='https://github.com/ParaN3xus/typress'>Github Repo</a></p>" | |
examples =[["image_0.png"], ["image_1.png"], ["image_2.png"]] | |
iface = gr.Interface(fn=process_image, | |
inputs=gr.Image(type="pil"), | |
outputs=gr.Textbox(), | |
title=title, | |
description=description, | |
article=article, | |
examples=examples) | |
iface.launch(debug=True) |