EstateGuru / app.py
pathakDev10's picture
changes
50fadef
raw
history blame
25.7 kB
import uuid
import threading
import asyncio
import json
import re
from datetime import datetime
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
# ------------------------ Chatbot Code (Unmodified) ------------------------
from langchain_core.messages import AIMessage, HumanMessage, SystemMessage
from langgraph.graph import StateGraph, START, END
# from langchain_ollama import ChatOllama
import faiss
from sentence_transformers import SentenceTransformer
import pickle
import numpy as np
from tools import extract_json_from_response, apply_filters_partial, rule_based_extract, format_property_data, estateKeywords
import random
from langchain_core.tools import tool
from langchain_core.callbacks import StreamingStdOutCallbackHandler, CallbackManager
from langchain_core.callbacks.base import BaseCallbackHandler
# ------------------------ Custom Callback for WebSocket Streaming ------------------------
class WebSocketStreamingCallbackHandler(BaseCallbackHandler):
def __init__(self, connection_id: str, loop):
self.connection_id = connection_id
self.loop = loop
def on_llm_new_token(self, token: str, **kwargs):
asyncio.run_coroutine_threadsafe(
manager_socket.send_message(self.connection_id, token),
self.loop
)
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
class ChatHuggingFace:
def __init__(self, model, token, temperature=0.3, streaming=False):
# Instead of using InferenceClient, load the model locally.
self.temperature = temperature
self.streaming = streaming
self.tokenizer = AutoTokenizer.from_pretrained(model)
self.model = AutoModelForCausalLM.from_pretrained(model)
self.pipeline = pipeline("text-generation", model=self.model, tokenizer=self.tokenizer)
def invoke(self, messages, config=None):
"""
Mimics the ChatOllama.invoke interface.
In streaming mode, token-by-token output is sent via callbacks.
Otherwise, returns a single aggregated response.
"""
config = config or {}
callbacks = config.get("callbacks", [])
aggregated_response = ""
# Build the prompt by concatenating messages in the expected format.
prompt = ""
for msg in messages:
role = msg.get("role", "")
content = msg.get("content", "")
if role == "system":
prompt += f"<|im_start|>system\n{content}\n<|im_end|>\n"
elif role == "user":
prompt += f"<|im_start|>user\n{content}\n<|im_end|>\n"
elif role == "assistant":
prompt += f"<|im_start|>assistant\n{content}\n<|im_end|>\n"
if self.streaming:
# Generate text locally.
full_output = self.pipeline(
prompt,
max_new_tokens=100,
do_sample=True,
temperature=self.temperature
)[0]['generated_text']
# Assume the pipeline returns the prompt + generated text.
new_text = full_output[len(prompt):]
# Simulate token-by-token streaming.
for token in new_text.split():
aggregated_response += token + " "
for cb in callbacks:
cb.on_llm_new_token(token=token + " ")
return type("AIMessage", (object,), {"content": aggregated_response.strip()})
else:
# Non-streaming mode.
response = self.pipeline(
prompt,
max_new_tokens=100,
do_sample=True,
temperature=self.temperature
)[0]['generated_text']
new_text = response[len(prompt):]
return type("AIMessage", (object,), {"content": new_text.strip()})
# ------------------------ LLM and Data Setup ------------------------
# model_name="qwen2.5:1.5b"
model_name="Qwen/Qwen2.5-1.5B-Instruct"
# llm = ChatOllama(model=model_name, temperature=0.3, streaming=True)
llm = ChatHuggingFace(
model=model_name,
# token=token,
temperature=0.3,
streaming=True # or True, based on your needs
)
index = faiss.read_index("./faiss.index")
with open("./metadata.pkl", "rb") as f:
docs = pickle.load(f)
st_model = SentenceTransformer('all-MiniLM-L6-v2')
def make_system_prompt(suffix: str) -> str:
return (
"You are EstateGuru, a real estate expert created by Abhishek Pathak from SwavishTek. "
"Your role is to help customers buy properties using the available data. "
"Only use the provided data—do not make up any information. "
"The default currency is AED. If a query uses a different currency, convert the amount to AED "
"(for example, $10k becomes 36726.50 AED and $1 becomes 3.67 AED). "
"If a customer is interested in a property, wants to buy, or needs to contact an agent or customer care, "
"instruct them to call +91 8766268285."
f"\n{suffix}"
)
general_query_prompt = make_system_prompt(
"You are EstateGuru, a helpful real estate assistant. Answer the user's query accurately using the available data. "
"Do not invent any details or go beyond the real estate domain. "
"If the user shows interest in a property or contacting an agent, ask them to call +91 8766268285."
)
# ------------------------ Tool Definitions ------------------------
@tool
def extract_filters(query: str) -> dict:
"""For extracting filters"""
# llm_local = ChatOllama(model=model_name, temperature=0.3)
llm_local = ChatHuggingFace(
model=model_name,
# token=token,
temperature=0.3,
streaming=False
)
system = (
"You are an expert in extracting filters from property-related queries. Your task is to extract and return only the keys explicitly mentioned in the query as a valid JSON object (starting with '{{' and ending with '}}'). Include only those keys that are directly present in the query.\n\n"
"The possible keys are:\n"
" - 'projectName': The name of the project.\n"
" - 'developerName': The developer's name.\n"
" - 'relationshipManager': The relationship manager.\n"
" - 'propertyAddress': The property address.\n"
" - 'surroundingArea': The area or nearby landmarks.\n"
" - 'propertyType': The type or configuration of the property.\n"
" - 'amenities': Any amenities mentioned.\n"
" - 'coveredParking': Parking availability.\n"
" - 'petRules': Pet policies.\n"
" - 'security': Security details.\n"
" - 'occupancyRate': Occupancy information.\n"
" - 'constructionImpact': Construction or its impact.\n"
" - 'propertySize': Size of the property.\n"
" - 'propertyView': View details.\n"
" - 'propertyCondition': Condition of the property.\n"
" - 'serviceCharges': Service or maintenance charges.\n"
" - 'ownershipType': Ownership type.\n"
" - 'totalCosts': A cost threshold or cost amount.\n"
" - 'paymentPlans': Payment or financing plans.\n"
" - 'expectedRentalYield': Expected rental yield.\n"
" - 'rentalHistory': Rental history.\n"
" - 'shortTermRentals': Short-term rental information.\n"
" - 'resalePotential': Resale potential.\n"
" - 'uniqueId': A unique identifier.\n\n"
"Important instructions regarding cost thresholds:\n"
" - If the query contains phrases like 'under 10k', 'below 2m', or 'less than 5k', interpret these as cost thresholds.\n"
" - Convert any shorthand cost values to pure numbers (for example, '10k' becomes 10000, '2m' becomes 2000000) and assign them to the key 'totalCosts'.\n"
" - Do not use 'propertySize' for cost thresholds.\n\n"
" - Default currency is AED, if user query have different currency symbol then convert to equivalent AED amount (eg. $10k becomes 36726.50, $1 becomes 3.67).\n\n"
"Example:\n"
" For the query: \"properties near dubai mall under 43k\"\n"
" The expected output should be:\n"
" {{ \"surroundingArea\": \"dubai mall\", \"totalCosts\": 43000 }}\n\n"
"Return ONLY a valid JSON object with the extracted keys and their corresponding values, with no additional text."
)
human_str = f"Here is the query:\n{query}"
filter_prompt = [
{"role": "system", "content": system},
{"role": "user", "content": human_str},
]
response = llm_local.invoke(messages=filter_prompt)
response_text = response.content if isinstance(response, AIMessage) else str(response)
try:
model_filters = extract_json_from_response(response_text)
except Exception as e:
print(f"JSON parsing error: {e}")
model_filters = {}
rule_filters = rule_based_extract(query)
print("Rule-based extraction:", rule_filters)
final_filters = {**model_filters, **rule_filters}
print("Final extraction:", final_filters)
return {"filters": final_filters}
@tool
def determine_route(query: str) -> dict:
"""For determining route using enhanced prompt and fallback logic."""
# Define a set of keywords that are strong indicators of a real estate query.
real_estate_keywords = estateKeywords
# Check if the query includes any of the positive signals.
pattern = re.compile("|".join(re.escape(keyword) for keyword in real_estate_keywords), re.IGNORECASE)
positive_signal = bool(pattern.search(query))
# Proceed with LLM classification regardless, but use the positive signal in fallback.
# llm_local = ChatOllama(model=model_name, temperature=0.3)
llm_local = ChatHuggingFace(
model=model_name,
# token=token,
temperature=0.3,
streaming=False
)
transform_suggest_to_list = query.lower().replace("suggest ", "list ", -1)
system = """
Classify the user query as:
- **"search"**: if it requests property listings with specific filters (e.g., location, price, property type like "2bhk", service charges, pet policies, etc.).
- **"suggest"**: if it asks for property suggestions without filters.
- **"detail"**: if it is asking for more information about a previously provided property (e.g., "tell me more about property 5" or "I want more information regarding 4BHK").
- **"general"**: for all other real estate-related questions.
- **"out_of_domain"**: if the query is not related to real estate (for example, tourist attractions, restaurants, etc.).
Keep in mind that queries mentioning terms like "service charge", "allow pets", "pet rules", etc., are considered real estate queries.
Return only the keyword: search, suggest, detail, general, or out_of_domain.
"""
human_str = f"Here is the query:\n{transform_suggest_to_list}"
filter_prompt = [
{"role": "system", "content": system},
{"role": "user", "content": human_str},
]
response = llm_local.invoke(messages=filter_prompt)
response_text = response.content if isinstance(response, AIMessage) else str(response)
route_value = str(response_text).strip().lower()
# Fallback: if no positive real estate signal is found, override to out_of_domain.
# if not positive_signal:
# route_value = "out_of_domain"
# Fallback
detail_phrases = [
"more information",
"tell me more",
"more details",
"give me more details",
"I need more details",
"can you provide more details",
"additional details",
"further information",
"expand on that",
"explain further",
"elaborate more",
"more specifics",
"I want to know more",
"could you elaborate",
"need more info",
"provide more details",
"detail it further",
"in-depth information",
"break it down further",
"further explanation"
]
if any(phrase in query.lower() for phrase in detail_phrases):
route_value = "detail"
if route_value not in {"search", "suggest", "detail", "general", "out_of_domain"}:
route_value = "general"
if route_value == "out_of_domain" and positive_signal:
route_value = "general"
if route_value == "out_of_domain":
# If positive real estate signal exists, treat it as "general".
route_value = "general" if positive_signal else "out_of_domain"
return {"route": route_value}
# ------------------------ Workflow Setup ------------------------
workflow = StateGraph(state_schema=dict)
def route_query(state: dict) -> dict:
new_state = state.copy()
try:
new_state["route"] = determine_route.invoke(new_state.get("query", "")).get("route", "general")
print(new_state["route"])
except Exception as e:
print(f"Routing error: {e}")
new_state["route"] = "general"
return new_state
def hybrid_extract(state: dict) -> dict:
new_state = state.copy()
new_state["filters"] = extract_filters.invoke(new_state.get("query", "")).get("filters", {})
return new_state
def search_faiss(state: dict) -> dict:
new_state = state.copy()
query_embedding = st_model.encode([state["query"]])
_, indices = index.search(query_embedding.astype(np.float32), 5)
new_state["faiss_results"] = [docs[idx] for idx in indices[0] if idx < len(docs)]
return new_state
def apply_filters(state: dict) -> dict:
new_state = state.copy()
new_state["final_results"] = apply_filters_partial(state["faiss_results"], state.get("filters", {}))
return new_state
def suggest_properties(state: dict) -> dict:
new_state = state.copy()
new_state["suggestions"] = random.sample(docs, 5)
return new_state
def handle_out_of_domain(state: dict) -> dict:
new_state = state.copy()
new_state["response"] = "I only handle real estate inquiries. Please ask a question related to properties."
return new_state
def generate_response(state: dict) -> dict:
new_state = state.copy()
detail_query_flag = False
# --- Disambiguate specific property requests using property number ---
property_match = re.search(r"(?:the\s+)?property\s*(\d+)\b", state.get("query", ""), re.IGNORECASE)
if property_match and new_state.get("current_properties"):
try:
index_requested = int(property_match.group(1)) - 1
if 0 <= index_requested < len(new_state["current_properties"]):
new_state["current_properties"] = [new_state["current_properties"][index_requested]]
detail_query_flag = True
new_state["detail_query"] = True
except Exception as e:
print(f"Property selection error: {e}")
# Construct messages for the LLM.
messages = []
# Add the general query prompt.
messages.append(SystemMessage(content=general_query_prompt))
# If this is a detail query, add a system message that forces a detailed answer.
if detail_query_flag:
messages.append(SystemMessage(content=(
"This is a detail query. Please provide detailed information about the property below. "
"Do not generate a new list of properties; only use the provided property details to answer the query. "
"Focus on answering the specific question (for example, whether pets are allowed)."
)))
# Provide the current property context.
if new_state.get("current_properties"):
property_context = format_property_data(new_state["current_properties"])
messages.insert(0, SystemMessage(content="Available Property:\n" + property_context))
# Add the conversation history.
for msg in state.get("messages", []):
if msg["role"] == "user":
messages.append(HumanMessage(content=msg["content"]))
else:
messages.append(AIMessage(content=msg["content"]))
# Instruction for response.
messages.append(SystemMessage(content=(
"When responding, use only the provided property details to answer the user's specific question about the property."
)))
# Invoke the LLM with the constructed messages.
connection_id = state.get("connection_id")
loop = state.get("loop")
if connection_id and loop:
callback_manager = CallbackManager([WebSocketStreamingCallbackHandler(connection_id, loop)])
_ = llm.invoke(
messages=messages,
config={"callbacks": callback_manager}
)
new_state["response"] = ""
else:
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
response = llm.invoke(
messages=messages,
config={"callbacks": callback_manager}
)
new_state["response"] = response.content if isinstance(response, AIMessage) else str(response)
return new_state
def format_final_response(state: dict) -> dict:
new_state = state.copy()
# Only override the current_properties if this is NOT a detail query.
if not state.get("detail_query", False):
if state.get("route") in ["search", "suggest"]:
if "final_results" in state:
new_state["current_properties"] = state["final_results"]
elif "suggestions" in state:
new_state["current_properties"] = state["suggestions"]
# Then format the response based on the (possibly filtered) current_properties.
if new_state.get("current_properties"):
formatted = []
for idx, prop in enumerate(new_state["current_properties"], 1):
cost = prop.get("totalCosts", "N/A")
cost_str = f"{cost:,}" if isinstance(cost, (int, float)) else cost
formatted.append(
f"{idx}. Type: {prop['propertyType']}, Cost: AED {cost_str}, "
f"Size: {prop.get('propertySize', 'N/A')}, Amenities: {', '.join(map(str, prop.get('amenities', []))) if prop.get('amenities') else 'N/A'}, "
f"Rental Yield: {prop.get('expectedRentalYield', 'N/A')}, "
f"Ownership: {prop.get('ownershipType', 'N/A')}\n"
)
aggregated_response = "Here are the property details:\n" + "\n".join(formatted)
connection_id = state.get("connection_id")
loop = state.get("loop")
if connection_id and loop:
import time
tokens = aggregated_response.split(" ")
for token in tokens:
asyncio.run_coroutine_threadsafe(
manager_socket.send_message(connection_id, token + " "),
loop
)
time.sleep(0.05)
new_state["response"] = ""
else:
new_state["response"] = aggregated_response
elif "response" in new_state:
new_state["response"] = str(new_state["response"])
return new_state
nodes = [
("route_query", route_query),
("hybrid_extract", hybrid_extract),
("faiss_search", search_faiss),
("apply_filters", apply_filters),
("suggest_properties", suggest_properties),
("handle_out_of_domain", handle_out_of_domain),
("generate_response", generate_response),
("format_response", format_final_response)
]
for name, node in nodes:
workflow.add_node(name, node)
workflow.add_edge(START, "route_query")
workflow.add_conditional_edges(
"route_query",
lambda state: state.get("route", "general"),
{
"search": "hybrid_extract",
"suggest": "suggest_properties",
"detail": "generate_response",
"general": "generate_response",
"out_of_domain": "handle_out_of_domain"
}
)
workflow.add_edge("hybrid_extract", "faiss_search")
workflow.add_edge("faiss_search", "apply_filters")
workflow.add_edge("apply_filters", "format_response")
workflow.add_edge("suggest_properties", "format_response")
workflow.add_edge("generate_response", "format_response")
workflow.add_edge("handle_out_of_domain", "format_response")
workflow.add_edge("format_response", END)
workflow_app = workflow.compile()
# ------------------------ Conversation Manager ------------------------
class ConversationManager:
def __init__(self):
self.conversation_history = []
self.current_properties = []
def _add_message(self, role: str, content: str):
self.conversation_history.append({
"role": role,
"content": content,
"timestamp": datetime.now().isoformat()
})
def process_query(self, query: str) -> str:
# Reset context on greetings to avoid using off-domain history
if query.strip().lower() in {"hi", "hello", "hey"}:
self.conversation_history = []
self.current_properties = []
greeting_response = "Hello! How can I assist you today with your real estate inquiries?"
self._add_message("assistant", greeting_response)
return greeting_response
try:
self._add_message("user", query)
initial_state = {
"messages": self.conversation_history.copy(),
"query": query,
"route": "general",
"filters": {},
"current_properties": self.current_properties
}
for event in workflow_app.stream(initial_state, stream_mode="values"):
final_state = event
if 'final_results' in final_state:
self.current_properties = final_state['final_results']
elif 'suggestions' in final_state:
self.current_properties = final_state['suggestions']
if final_state.get("route") == "general":
response_text = final_state.get("response", "")
self._add_message("assistant", response_text)
return response_text
else:
response = final_state.get("response", "I couldn't process that request.")
self._add_message("assistant", response)
return response
except Exception as e:
print(f"Processing error: {e}")
return "Sorry, I encountered an error processing your request."
conversation_managers = {}
# ------------------------ FastAPI Backend with WebSockets ------------------------
app = FastAPI()
class ConnectionManager:
def __init__(self):
self.active_connections = {}
async def connect(self, websocket: WebSocket):
await websocket.accept()
connection_id = str(uuid.uuid4())
self.active_connections[connection_id] = websocket
print(f"New connection: {connection_id}")
return connection_id
def disconnect(self, connection_id: str):
if connection_id in self.active_connections:
del self.active_connections[connection_id]
print(f"Disconnected: {connection_id}")
async def send_message(self, connection_id: str, message: str):
websocket = self.active_connections.get(connection_id)
if websocket:
await websocket.send_text(message)
manager_socket = ConnectionManager()
def stream_query(query: str, connection_id: str, loop):
conv_manager = conversation_managers.get(connection_id)
if conv_manager is None:
print(f"No conversation manager found for connection {connection_id}")
return
# Check for greetings and handle them immediately
if query.strip().lower() in {"hi", "hello", "hey"}:
conv_manager.conversation_history = []
conv_manager.current_properties = []
greeting_response = "Hello! How can I assist you today with your real estate inquiries?"
conv_manager._add_message("assistant", greeting_response)
asyncio.run_coroutine_threadsafe(
manager_socket.send_message(connection_id, greeting_response),
loop
)
return
conv_manager._add_message("user", query)
initial_state = {
"messages": conv_manager.conversation_history.copy(),
"query": query,
"route": "general",
"filters": {},
"current_properties": conv_manager.current_properties,
"connection_id": connection_id,
"loop": loop
}
try:
workflow_app.invoke(initial_state)
except Exception as e:
error_msg = f"Error processing query: {str(e)}"
asyncio.run_coroutine_threadsafe(
manager_socket.send_message(connection_id, error_msg),
loop
)
@app.websocket("/ws")
async def websocket_endpoint(websocket: WebSocket):
connection_id = await manager_socket.connect(websocket)
conversation_managers[connection_id] = ConversationManager()
try:
while True:
query = await websocket.receive_text()
loop = asyncio.get_event_loop()
threading.Thread(
target=stream_query,
args=(query, connection_id, loop),
daemon=True
).start()
except WebSocketDisconnect:
conv_manager = conversation_managers.get(connection_id)
if conv_manager:
filename = f"conversations/conversation_{connection_id}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
with open(filename, "w") as f:
json.dump(conv_manager.conversation_history, f, indent=4)
del conversation_managers[connection_id]
manager_socket.disconnect(connection_id)
@app.post("/query")
async def post_query(query: str):
conv_manager = ConversationManager()
response = conv_manager.process_query(query)
return {"response": response}