Spaces:
Sleeping
Sleeping
load model before gpu spaces invoke
Browse files
app.py
CHANGED
@@ -34,43 +34,43 @@ parsed_descriptions_queue = deque()
|
|
34 |
MAX_DESCRIPTIONS = 30
|
35 |
MAX_IMAGES = 1 # Generate only 1 image
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
|
75 |
def generate_description_prompt(subject, user_prompt, text_generator):
|
76 |
prompt = f"write concise vivid visual description enclosed in brackets like [ <description> ] less than 100 words of {user_prompt} different from {subject}. "
|
@@ -93,13 +93,6 @@ def generate_descriptions(user_prompt, seed_words_input, batch_size=100, max_ite
|
|
93 |
description_queue = deque()
|
94 |
iteration_count = 0
|
95 |
|
96 |
-
print("Initializing the text generation pipeline with 16-bit precision...")
|
97 |
-
model_name = 'NousResearch/Meta-Llama-3.1-8B-Instruct'
|
98 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map='auto')
|
99 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
100 |
-
text_generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
|
101 |
-
print("Text generation pipeline initialized with 16-bit precision.")
|
102 |
-
|
103 |
seed_words.extend(re.findall(r'"(.*?)"', seed_words_input))
|
104 |
|
105 |
for _ in range(2): # Perform two iterations
|
@@ -128,10 +121,8 @@ def generate_descriptions(user_prompt, seed_words_input, batch_size=100, max_ite
|
|
128 |
|
129 |
return list(parsed_descriptions_queue)
|
130 |
|
131 |
-
@spaces.GPU
|
132 |
def generate_images(parsed_descriptions, max_iterations=2): # Set max_iterations to 1
|
133 |
-
pipe = initialize_diffusers()
|
134 |
-
|
135 |
if len(parsed_descriptions) < MAX_IMAGES:
|
136 |
prompts = parsed_descriptions
|
137 |
else:
|
@@ -161,4 +152,4 @@ if __name__ == '__main__':
|
|
161 |
allow_flagging='never' # Disable flagging
|
162 |
)
|
163 |
|
164 |
-
interface.launch(share=True)
|
|
|
34 |
MAX_DESCRIPTIONS = 30
|
35 |
MAX_IMAGES = 1 # Generate only 1 image
|
36 |
|
37 |
+
# Preload models and checkpoints
|
38 |
+
print("Preloading models and checkpoints...")
|
39 |
+
model_name = 'NousResearch/Meta-Llama-3.1-8B-Instruct'
|
40 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map='auto')
|
41 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
42 |
+
text_generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
|
43 |
+
|
44 |
+
bfl_repo = 'black-forest-labs/FLUX.1-schnell'
|
45 |
+
revision = 'refs/pr/1'
|
46 |
+
|
47 |
+
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(bfl_repo, subfolder='scheduler', revision=revision)
|
48 |
+
text_encoder = CLIPTextModel.from_pretrained('openai/clip-vit-large-patch14', torch_dtype=dtype)
|
49 |
+
tokenizer_clip = CLIPTokenizer.from_pretrained('openai/clip-vit-large-patch14', torch_dtype=dtype)
|
50 |
+
text_encoder_2 = T5EncoderModel.from_pretrained(bfl_repo, subfolder='text_encoder_2', torch_dtype=dtype, revision=revision)
|
51 |
+
tokenizer_2 = T5TokenizerFast.from_pretrained(bfl_repo, subfolder='tokenizer_2', torch_dtype=dtype, revision=revision)
|
52 |
+
vae = AutoencoderKL.from_pretrained(bfl_repo, subfolder='vae', torch_dtype=dtype, revision=revision)
|
53 |
+
transformer = FluxTransformer2DModel.from_pretrained(bfl_repo, subfolder='transformer', torch_dtype=dtype, revision=revision)
|
54 |
+
|
55 |
+
quantize(transformer, weights=qfloat8)
|
56 |
+
freeze(transformer)
|
57 |
+
quantize(text_encoder_2, weights=qfloat8)
|
58 |
+
freeze(text_encoder_2)
|
59 |
+
|
60 |
+
pipe = FluxPipeline(
|
61 |
+
scheduler=scheduler,
|
62 |
+
text_encoder=text_encoder,
|
63 |
+
tokenizer=tokenizer_clip,
|
64 |
+
text_encoder_2=None,
|
65 |
+
tokenizer_2=tokenizer_2,
|
66 |
+
vae=vae,
|
67 |
+
transformer=None,
|
68 |
+
)
|
69 |
+
pipe.text_encoder_2 = text_encoder_2
|
70 |
+
pipe.transformer = transformer
|
71 |
+
pipe.enable_model_cpu_offload()
|
72 |
+
|
73 |
+
print("Models and checkpoints preloaded.")
|
74 |
|
75 |
def generate_description_prompt(subject, user_prompt, text_generator):
|
76 |
prompt = f"write concise vivid visual description enclosed in brackets like [ <description> ] less than 100 words of {user_prompt} different from {subject}. "
|
|
|
93 |
description_queue = deque()
|
94 |
iteration_count = 0
|
95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
seed_words.extend(re.findall(r'"(.*?)"', seed_words_input))
|
97 |
|
98 |
for _ in range(2): # Perform two iterations
|
|
|
121 |
|
122 |
return list(parsed_descriptions_queue)
|
123 |
|
124 |
+
@spaces.GPU(duration=120)
|
125 |
def generate_images(parsed_descriptions, max_iterations=2): # Set max_iterations to 1
|
|
|
|
|
126 |
if len(parsed_descriptions) < MAX_IMAGES:
|
127 |
prompts = parsed_descriptions
|
128 |
else:
|
|
|
152 |
allow_flagging='never' # Disable flagging
|
153 |
)
|
154 |
|
155 |
+
interface.launch(share=True)
|