Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -41,35 +41,45 @@ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float
|
|
41 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
42 |
text_generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
text_encoder_2=
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
|
|
73 |
print("Models and checkpoints preloaded.")
|
74 |
|
75 |
def generate_description_prompt(subject, user_prompt, text_generator):
|
@@ -122,7 +132,7 @@ def generate_descriptions(user_prompt, seed_words_input, batch_size=100, max_ite
|
|
122 |
return list(parsed_descriptions_queue)
|
123 |
|
124 |
@spaces.GPU(duration=120)
|
125 |
-
def generate_images(parsed_descriptions, max_iterations=
|
126 |
if len(parsed_descriptions) < MAX_IMAGES:
|
127 |
prompts = parsed_descriptions
|
128 |
else:
|
@@ -152,4 +162,4 @@ if __name__ == '__main__':
|
|
152 |
allow_flagging='never' # Disable flagging
|
153 |
)
|
154 |
|
155 |
-
interface.launch(share=True)
|
|
|
41 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
42 |
text_generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
|
43 |
|
44 |
+
def initialize_diffusers():
|
45 |
+
from optimum.quanto import freeze, qfloat8, quantize
|
46 |
+
from diffusers import FlowMatchEulerDiscreteScheduler, AutoencoderKL
|
47 |
+
from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel
|
48 |
+
from diffusers.pipelines.flux.pipeline_flux import FluxPipeline
|
49 |
+
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
|
50 |
+
|
51 |
+
bfl_repo = 'black-forest-labs/FLUX.1-schnell'
|
52 |
+
revision = 'refs/pr/1'
|
53 |
+
|
54 |
+
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(bfl_repo, subfolder='scheduler', revision=revision)
|
55 |
+
text_encoder = CLIPTextModel.from_pretrained('openai/clip-vit-large-patch14', torch_dtype=dtype)
|
56 |
+
tokenizer = CLIPTokenizer.from_pretrained('openai/clip-vit-large-patch14', torch_dtype=dtype)
|
57 |
+
text_encoder_2 = T5EncoderModel.from_pretrained(bfl_repo, subfolder='text_encoder_2', torch_dtype=dtype, revision=revision)
|
58 |
+
tokenizer_2 = T5TokenizerFast.from_pretrained(bfl_repo, subfolder='tokenizer_2', torch_dtype=dtype, revision=revision)
|
59 |
+
vae = AutoencoderKL.from_pretrained(bfl_repo, subfolder='vae', torch_dtype=dtype, revision=revision)
|
60 |
+
transformer = FluxTransformer2DModel.from_pretrained(bfl_repo, subfolder='transformer', torch_dtype=dtype, revision=revision)
|
61 |
+
|
62 |
+
quantize(transformer, weights=qfloat8)
|
63 |
+
freeze(transformer)
|
64 |
+
quantize(text_encoder_2, weights=qfloat8)
|
65 |
+
freeze(text_encoder_2)
|
66 |
+
|
67 |
+
pipe = FluxPipeline(
|
68 |
+
scheduler=scheduler,
|
69 |
+
text_encoder=text_encoder,
|
70 |
+
tokenizer=tokenizer,
|
71 |
+
text_encoder_2=None,
|
72 |
+
tokenizer_2=tokenizer_2,
|
73 |
+
vae=vae,
|
74 |
+
transformer=None,
|
75 |
+
)
|
76 |
+
pipe.text_encoder_2 = text_encoder_2
|
77 |
+
pipe.transformer = transformer
|
78 |
+
pipe.enable_model_cpu_offload()
|
79 |
+
|
80 |
+
return pipe
|
81 |
|
82 |
+
pipe = initialize_diffusers()
|
83 |
print("Models and checkpoints preloaded.")
|
84 |
|
85 |
def generate_description_prompt(subject, user_prompt, text_generator):
|
|
|
132 |
return list(parsed_descriptions_queue)
|
133 |
|
134 |
@spaces.GPU(duration=120)
|
135 |
+
def generate_images(parsed_descriptions, max_iterations=1): # Set max_iterations to 1
|
136 |
if len(parsed_descriptions) < MAX_IMAGES:
|
137 |
prompts = parsed_descriptions
|
138 |
else:
|
|
|
162 |
allow_flagging='never' # Disable flagging
|
163 |
)
|
164 |
|
165 |
+
interface.launch(share=True)
|