Spaces:
Sleeping
Sleeping
from transformers import pipeline | |
from src.TextSummarizer.config.config_manager import ConfigManager | |
class PredictionPipeline: | |
def __init__(self): | |
self.config = ConfigManager().get_model_evaluation_config() | |
def predict(self, text): | |
""" | |
Predict the tex summarization for the given text. | |
""" | |
gen_kwargs = {"length_penalty": 0.8, "num_beams":8, "max_length": 128} | |
# Call our own pretrained model from hugging face. | |
summarizer = pipeline("summarization", model=self.config.hub_model_name) | |
print("document:") | |
print(text) | |
output = summarizer(text, **gen_kwargs)[0]["summary_text"] | |
print("\nModel Summary:") | |
print(output) | |
return output | |