ScholarAgent / app.py
pdx97's picture
Update app.py
79b8e3b verified
raw
history blame
16.2 kB
# # import feedparser
# # import urllib.parse
# # import yaml
# # import gradio as gr
# # from smolagents import CodeAgent, HfApiModel, tool
# # from tools.final_answer import FinalAnswerTool
# # @tool
# # def fetch_latest_arxiv_papers(keywords: list, num_results: int = 3) -> list:
# # """Fetches the latest research papers from arXiv based on provided keywords.
# # Args:
# # keywords: A list of keywords to search for relevant papers.
# # num_results: The number of papers to fetch (default is 3).
# # Returns:
# # A list of dictionaries containing:
# # - "title": The title of the research paper.
# # - "authors": The authors of the paper.
# # - "year": The publication year.
# # - "abstract": A summary of the research paper.
# # - "link": A direct link to the paper on arXiv.
# # """
# # try:
# # print(f"DEBUG: Searching arXiv papers with keywords: {keywords}") # Debug input
# # #Properly format query with +AND+ for multiple keywords
# # query = "+AND+".join([f"all:{kw}" for kw in keywords])
# # query_encoded = urllib.parse.quote(query) # Encode spaces and special characters
# # url = f"http://export.arxiv.org/api/query?search_query={query_encoded}&start=0&max_results={num_results}&sortBy=submittedDate&sortOrder=descending"
# # print(f"DEBUG: Query URL - {url}") # Debug URL
# # feed = feedparser.parse(url)
# # papers = []
# # for entry in feed.entries:
# # papers.append({
# # "title": entry.title,
# # "authors": ", ".join(author.name for author in entry.authors),
# # "year": entry.published[:4], # Extract year
# # "abstract": entry.summary,
# # "link": entry.link
# # })
# # return papers
# # except Exception as e:
# # print(f"ERROR: {str(e)}") # Debug errors
# # return [f"Error fetching research papers: {str(e)}"]
# #"""------Applied BM25 search for paper retrival------"""
# # from rank_bm25 import BM25Okapi
# # import nltk
# # import os
# # import shutil
# # nltk_data_path = os.path.join(nltk.data.path[0], "tokenizers", "punkt")
# # if os.path.exists(nltk_data_path):
# # shutil.rmtree(nltk_data_path) # Remove corrupted version
# # print("Removed old NLTK 'punkt' data. Reinstalling...")
# # # Step 2: Download the correct 'punkt' tokenizer
# # nltk.download("punkt_tab")
# # print("Successfully installed 'punkt'!")
# # @tool # Register the function properly as a SmolAgents tool
# # def fetch_latest_arxiv_papers(keywords: list, num_results: int = 5) -> list:
# # """Fetches and ranks arXiv papers using BM25 keyword relevance.
# # Args:
# # keywords: List of keywords for search.
# # num_results: Number of results to return.
# # Returns:
# # List of the most relevant papers based on BM25 ranking.
# # """
# # try:
# # print(f"DEBUG: Searching arXiv papers with keywords: {keywords}")
# # # Use a general keyword search (without `ti:` and `abs:`)
# # query = "+AND+".join([f"all:{kw}" for kw in keywords])
# # query_encoded = urllib.parse.quote(query)
# # url = f"http://export.arxiv.org/api/query?search_query={query_encoded}&start=0&max_results=50&sortBy=submittedDate&sortOrder=descending"
# # print(f"DEBUG: Query URL - {url}")
# # feed = feedparser.parse(url)
# # papers = []
# # # Extract papers from arXiv
# # for entry in feed.entries:
# # papers.append({
# # "title": entry.title,
# # "authors": ", ".join(author.name for author in entry.authors),
# # "year": entry.published[:4],
# # "abstract": entry.summary,
# # "link": entry.link
# # })
# # if not papers:
# # return [{"error": "No results found. Try different keywords."}]
# # # Apply BM25 ranking
# # tokenized_corpus = [nltk.word_tokenize(paper["title"].lower() + " " + paper["abstract"].lower()) for paper in papers]
# # bm25 = BM25Okapi(tokenized_corpus)
# # tokenized_query = nltk.word_tokenize(" ".join(keywords).lower())
# # scores = bm25.get_scores(tokenized_query)
# # # Sort papers based on BM25 score
# # ranked_papers = sorted(zip(papers, scores), key=lambda x: x[1], reverse=True)
# # # Return the most relevant ones
# # return [paper[0] for paper in ranked_papers[:num_results]]
# # except Exception as e:
# # print(f"ERROR: {str(e)}")
# # return [{"error": f"Error fetching research papers: {str(e)}"}]
# """------Applied TF-IDF for better semantic search------"""
# import feedparser
# import urllib.parse
# import yaml
# from tools.final_answer import FinalAnswerTool
# import numpy as np
# from sklearn.feature_extraction.text import TfidfVectorizer
# from sklearn.metrics.pairwise import cosine_similarity
# import gradio as gr
# from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
# import nltk
# import datetime
# import requests
# import pytz
# from tools.final_answer import FinalAnswerTool
# from Gradio_UI import GradioUI
# nltk.download("stopwords")
# from nltk.corpus import stopwords
# @tool # ✅ Register the function properly as a SmolAgents tool
# def fetch_latest_arxiv_papers(keywords: list, num_results: int = 5) -> list:
# """Fetches and ranks arXiv papers using TF-IDF and Cosine Similarity.
# Args:
# keywords: List of keywords for search.
# num_results: Number of results to return.
# Returns:
# List of the most relevant papers based on TF-IDF ranking.
# """
# try:
# print(f"DEBUG: Searching arXiv papers with keywords: {keywords}")
# # Use a general keyword search
# query = "+AND+".join([f"all:{kw}" for kw in keywords])
# query_encoded = urllib.parse.quote(query)
# url = f"http://export.arxiv.org/api/query?search_query={query_encoded}&start=0&max_results=50&sortBy=submittedDate&sortOrder=descending"
# print(f"DEBUG: Query URL - {url}")
# feed = feedparser.parse(url)
# papers = []
# # Extract papers from arXiv
# for entry in feed.entries:
# papers.append({
# "title": entry.title,
# "authors": ", ".join(author.name for author in entry.authors),
# "year": entry.published[:4],
# "abstract": entry.summary,
# "link": entry.link
# })
# if not papers:
# return [{"error": "No results found. Try different keywords."}]
# # Prepare TF-IDF Vectorization
# corpus = [paper["title"] + " " + paper["abstract"] for paper in papers]
# vectorizer = TfidfVectorizer(stop_words=stopwords.words('english')) # Remove stopwords
# tfidf_matrix = vectorizer.fit_transform(corpus)
# # Transform Query into TF-IDF Vector
# query_str = " ".join(keywords)
# query_vec = vectorizer.transform([query_str])
# #Compute Cosine Similarity
# similarity_scores = cosine_similarity(query_vec, tfidf_matrix).flatten()
# #Sort papers based on similarity score
# ranked_papers = sorted(zip(papers, similarity_scores), key=lambda x: x[1], reverse=True)
# # Return the most relevant papers
# return [paper[0] for paper in ranked_papers[:num_results]]
# except Exception as e:
# print(f"ERROR: {str(e)}")
# return [{"error": f"Error fetching research papers: {str(e)}"}]
# @tool
# def get_current_time_in_timezone(timezone: str) -> str:
# """A tool that fetches the current local time in a specified timezone.
# Args:
# timezone: A string representing a valid timezone (e.g., 'America/New_York').
# """
# try:
# # Create timezone object
# tz = pytz.timezone(timezone)
# # Get current time in that timezone
# local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
# return f"The current local time in {timezone} is: {local_time}"
# except Exception as e:
# return f"Error fetching time for timezone '{timezone}': {str(e)}"
# final_answer = FinalAnswerTool()
# # AI Model
# model = HfApiModel(
# max_tokens=2096,
# temperature=0.5,
# model_id='Qwen/Qwen2.5-Coder-32B-Instruct',
# custom_role_conversions=None,
# )
# # Import tool from Hub
# image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
# # Load prompt templates
# with open("prompts.yaml", 'r') as stream:
# prompt_templates = yaml.safe_load(stream)
# # Create the AI Agent
# agent = CodeAgent(
# model=model,
# tools=[final_answer,fetch_latest_arxiv_papers], # Add your tools here
# max_steps=6,
# verbosity_level=1,
# grammar=None,
# planning_interval=None,
# name="ScholarAgent",
# description="An AI agent that fetches the latest research papers from arXiv based on user-defined keywords and filters.",
# prompt_templates=prompt_templates
# )
# # # Define Gradio Search Function
# # def search_papers(user_input):
# # keywords = [kw.strip() for kw in user_input.split(",") if kw.strip()] # Ensure valid keywords
# # print(f"DEBUG: Received input keywords - {keywords}") # Debug user input
# # if not keywords:
# # print("DEBUG: No valid keywords provided.")
# # return "Error: Please enter at least one valid keyword."
# # results = fetch_latest_arxiv_papers(keywords, num_results=3) # Fetch 3 results
# # print(f"DEBUG: Results received - {results}") # Debug function output
# # if isinstance(results, list) and results and isinstance(results[0], dict):
# # #Format output with better readability and clarity
# # formatted_results = "\n\n".join([
# # f"---\n\n"
# # f"📌 **Title:**\n{paper['title']}\n\n"
# # f"👨‍🔬 **Authors:**\n{paper['authors']}\n\n"
# # f"📅 **Year:** {paper['year']}\n\n"
# # f"📖 **Abstract:**\n{paper['abstract'][:500]}... *(truncated for readability)*\n\n"
# # f"[🔗 Read Full Paper]({paper['link']})\n\n"
# # for paper in results
# # ])
# # return formatted_results
# # print("DEBUG: No results found.")
# # return "No results found. Try different keywords."
# #Search Papers
# def search_papers(user_input):
# keywords = [kw.strip() for kw in user_input.split(",") if kw.strip()] # Ensure valid keywords
# print(f"DEBUG: Received input keywords - {keywords}") # Debug user input
# if not keywords:
# print("DEBUG: No valid keywords provided.")
# return "Error: Please enter at least one valid keyword."
# results = fetch_latest_arxiv_papers(keywords, num_results=3) # Fetch 3 results
# print(f"DEBUG: Results received - {results}") # Debug function output
# # Check if the API returned an error
# if isinstance(results, list) and len(results) > 0 and "error" in results[0]:
# return results[0]["error"] # Return the error message directly
# # Format results only if valid papers exist
# if isinstance(results, list) and results and isinstance(results[0], dict):
# formatted_results = "\n\n".join([
# f"---\n\n"
# f"📌 **Title:** {paper['title']}\n\n"
# f"👨‍🔬 **Authors:** {paper['authors']}\n\n"
# f"📅 **Year:** {paper['year']}\n\n"
# f"📖 **Abstract:** {paper['abstract'][:500]}... *(truncated for readability)*\n\n"
# f"[🔗 Read Full Paper]({paper['link']})\n\n"
# for paper in results
# ])
# return formatted_results
# print("DEBUG: No results found.")
# return "No results found. Try different keywords."
# # Launch Gradio UI with CodeAgent
# GradioUI(agent).launch()
# # # Create Gradio UI
# # with gr.Blocks() as demo:
# # gr.Markdown("# ScholarAgent")
# # keyword_input = gr.Textbox(label="Enter keywords (comma-separated)", placeholder="e.g., deep learning, reinforcement learning")
# # output_display = gr.Markdown()
# # search_button = gr.Button("Search")
# # search_button.click(search_papers, inputs=[keyword_input], outputs=[output_display])
# # print("DEBUG: Gradio UI is running. Waiting for user input...")
# # # Launch Gradio App
# # demo.launch()
import os
import datetime
import requests
import pytz
import yaml
from smolagents import CodeAgent, HfApiModel, load_tool, tool
from tools.final_answer import FinalAnswerTool
from Gradio_UI import GradioUI
# Step 1: Set Hugging Face API Token
os.environ["HUGGINGFACEHUB_API_TOKEN"] = "your_huggingface_api_token"
# Step 2: Define ScholarAgent's Paper Search Functionality
@tool
def fetch_arxiv_papers(query: str) -> str:
"""Fetches the top 3 most recent research papers from ArXiv based on a keyword search.
Args:
query: A string containing keywords or a full sentence describing the research topic.
Returns:
A formatted string with the top 3 recent papers, including title, authors, and ArXiv links.
"""
base_url = "http://export.arxiv.org/api/query"
params = {
"search_query": query,
"start": 0,
"max_results": 3,
"sortBy": "submittedDate",
"sortOrder": "descending",
}
try:
response = requests.get(base_url, params=params)
if response.status_code == 200:
papers = response.text.split("<entry>")
results = []
for paper in papers[1:4]: # Extract top 3 papers
title = paper.split("<title>")[1].split("</title>")[0].strip()
authors = paper.split("<author><name>")[1].split("</name>")[0].strip()
link = paper.split("<id>")[1].split("</id>")[0].strip()
results.append(f"- **{title}**\n - 📖 Authors: {authors}\n - 🔗 [Read here]({link})\n")
return "\n".join(results) if results else "No relevant papers found."
else:
return "Error: Unable to retrieve papers from ArXiv."
except Exception as e:
return f"API Error: {str(e)}"
# Step 3: Add a Timezone Utility Tool
@tool
def get_current_time_in_timezone(timezone: str) -> str:
"""Fetches the current local time in a specified timezone.
Args:
timezone: A string representing a valid timezone (e.g., 'America/New_York').
Returns:
A formatted string with the current time.
"""
try:
tz = pytz.timezone(timezone)
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
return f"The current local time in {timezone} is: {local_time}"
except Exception as e:
return f"Error fetching time for timezone '{timezone}': {str(e)}"
# Step 4: Define Final Answer Tool (Required)
final_answer = FinalAnswerTool()
# Step 5: Configure Hugging Face Model with API Token
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct', # Default model
custom_role_conversions=None,
)
# Step 6: Load Additional Tools
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
# Step 7: Load Prompt Templates
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
# Step 8: Define ScholarAgent (AI Agent)
agent = CodeAgent(
model=model,
tools=[final_answer, fetch_arxiv_papers, get_current_time_in_timezone], # ScholarAgent tools
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name="ScholarAgent",
description="An AI-powered research assistant that fetches top research papers from ArXiv.",
prompt_templates=prompt_templates
)
# Step 9: Launch Gradio UI with CodeAgent
GradioUI(agent).launch()