ScholarAgent / app.py
pdx97's picture
Update app.py
bde3c06 verified
# # import feedparser
# # import urllib.parse
# # import yaml
# # import gradio as gr
# # from smolagents import CodeAgent, HfApiModel, tool
# # from tools.final_answer import FinalAnswerTool
# # @tool
# # def fetch_latest_arxiv_papers(keywords: list, num_results: int = 3) -> list:
# # """Fetches the latest research papers from arXiv based on provided keywords.
# # Args:
# # keywords: A list of keywords to search for relevant papers.
# # num_results: The number of papers to fetch (default is 3).
# # Returns:
# # A list of dictionaries containing:
# # - "title": The title of the research paper.
# # - "authors": The authors of the paper.
# # - "year": The publication year.
# # - "abstract": A summary of the research paper.
# # - "link": A direct link to the paper on arXiv.
# # """
# # try:
# # print(f"DEBUG: Searching arXiv papers with keywords: {keywords}") # Debug input
# # #Properly format query with +AND+ for multiple keywords
# # query = "+AND+".join([f"all:{kw}" for kw in keywords])
# # query_encoded = urllib.parse.quote(query) # Encode spaces and special characters
# # url = f"http://export.arxiv.org/api/query?search_query={query_encoded}&start=0&max_results={num_results}&sortBy=submittedDate&sortOrder=descending"
# # print(f"DEBUG: Query URL - {url}") # Debug URL
# # feed = feedparser.parse(url)
# # papers = []
# # for entry in feed.entries:
# # papers.append({
# # "title": entry.title,
# # "authors": ", ".join(author.name for author in entry.authors),
# # "year": entry.published[:4], # Extract year
# # "abstract": entry.summary,
# # "link": entry.link
# # })
# # return papers
# # except Exception as e:
# # print(f"ERROR: {str(e)}") # Debug errors
# # return [f"Error fetching research papers: {str(e)}"]
# #"""------Applied BM25 search for paper retrival------"""
# # from rank_bm25 import BM25Okapi
# # import nltk
# # import os
# # import shutil
# # nltk_data_path = os.path.join(nltk.data.path[0], "tokenizers", "punkt")
# # if os.path.exists(nltk_data_path):
# # shutil.rmtree(nltk_data_path) # Remove corrupted version
# # print("Removed old NLTK 'punkt' data. Reinstalling...")
# # # Step 2: Download the correct 'punkt' tokenizer
# # nltk.download("punkt_tab")
# # print("Successfully installed 'punkt'!")
# # @tool # Register the function properly as a SmolAgents tool
# # def fetch_latest_arxiv_papers(keywords: list, num_results: int = 5) -> list:
# # """Fetches and ranks arXiv papers using BM25 keyword relevance.
# # Args:
# # keywords: List of keywords for search.
# # num_results: Number of results to return.
# # Returns:
# # List of the most relevant papers based on BM25 ranking.
# # """
# # try:
# # print(f"DEBUG: Searching arXiv papers with keywords: {keywords}")
# # # Use a general keyword search (without `ti:` and `abs:`)
# # query = "+AND+".join([f"all:{kw}" for kw in keywords])
# # query_encoded = urllib.parse.quote(query)
# # url = f"http://export.arxiv.org/api/query?search_query={query_encoded}&start=0&max_results=50&sortBy=submittedDate&sortOrder=descending"
# # print(f"DEBUG: Query URL - {url}")
# # feed = feedparser.parse(url)
# # papers = []
# # # Extract papers from arXiv
# # for entry in feed.entries:
# # papers.append({
# # "title": entry.title,
# # "authors": ", ".join(author.name for author in entry.authors),
# # "year": entry.published[:4],
# # "abstract": entry.summary,
# # "link": entry.link
# # })
# # if not papers:
# # return [{"error": "No results found. Try different keywords."}]
# # # Apply BM25 ranking
# # tokenized_corpus = [nltk.word_tokenize(paper["title"].lower() + " " + paper["abstract"].lower()) for paper in papers]
# # bm25 = BM25Okapi(tokenized_corpus)
# # tokenized_query = nltk.word_tokenize(" ".join(keywords).lower())
# # scores = bm25.get_scores(tokenized_query)
# # # Sort papers based on BM25 score
# # ranked_papers = sorted(zip(papers, scores), key=lambda x: x[1], reverse=True)
# # # Return the most relevant ones
# # return [paper[0] for paper in ranked_papers[:num_results]]
# # except Exception as e:
# # print(f"ERROR: {str(e)}")
# # return [{"error": f"Error fetching research papers: {str(e)}"}]
"""------Applied TF-IDF for better semantic search------"""
import feedparser
import urllib.parse
import yaml
from tools.final_answer import FinalAnswerTool
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import gradio as gr
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import nltk
import datetime
import requests
import pytz
from tools.final_answer import FinalAnswerTool
from Gradio_UI import GradioUI
nltk.download("stopwords")
from nltk.corpus import stopwords
@tool # ✅ Register the function properly as a SmolAgents tool
def fetch_latest_arxiv_papers(keywords: list, num_results: int = 5) -> list:
"""Fetches and ranks arXiv papers using TF-IDF and Cosine Similarity.
Args:
keywords: List of keywords for search.
num_results: Number of results to return.
Returns:
List of the most relevant papers based on TF-IDF ranking.
"""
try:
print(f"DEBUG: Searching arXiv papers with keywords: {keywords}")
# Use a general keyword search
query = "+AND+".join([f"all:{kw}" for kw in keywords])
query_encoded = urllib.parse.quote(query)
url = f"http://export.arxiv.org/api/query?search_query={query_encoded}&start=0&max_results=50&sortBy=submittedDate&sortOrder=descending"
print(f"DEBUG: Query URL - {url}")
feed = feedparser.parse(url)
papers = []
# Extract papers from arXiv
for entry in feed.entries:
papers.append({
"title": entry.title,
"authors": ", ".join(author.name for author in entry.authors),
"year": entry.published[:4],
"abstract": entry.summary,
"link": entry.link
})
if not papers:
return [{"error": "No results found. Try different keywords."}]
# Prepare TF-IDF Vectorization
corpus = [paper["title"] + " " + paper["abstract"] for paper in papers]
vectorizer = TfidfVectorizer(stop_words=stopwords.words('english')) # Remove stopwords
tfidf_matrix = vectorizer.fit_transform(corpus)
# Transform Query into TF-IDF Vector
query_str = " ".join(keywords)
query_vec = vectorizer.transform([query_str])
#Compute Cosine Similarity
similarity_scores = cosine_similarity(query_vec, tfidf_matrix).flatten()
#Sort papers based on similarity score
ranked_papers = sorted(zip(papers, similarity_scores), key=lambda x: x[1], reverse=True)
# Return the most relevant papers
return [paper[0] for paper in ranked_papers[:num_results]]
except Exception as e:
print(f"ERROR: {str(e)}")
return [{"error": f"Error fetching research papers: {str(e)}"}]
@tool
def get_current_time_in_timezone(timezone: str) -> str:
"""A tool that fetches the current local time in a specified timezone.
Args:
timezone: A string representing a valid timezone (e.g., 'America/New_York').
"""
try:
# Create timezone object
tz = pytz.timezone(timezone)
# Get current time in that timezone
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
return f"The current local time in {timezone} is: {local_time}"
except Exception as e:
return f"Error fetching time for timezone '{timezone}': {str(e)}"
final_answer = FinalAnswerTool()
# AI Model
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',
custom_role_conversions=None,
)
# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
# Load prompt templates
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
# Create the AI Agent
agent = CodeAgent(
model=model,
tools=[final_answer,fetch_latest_arxiv_papers], # Add your tools here
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name="ScholarAgent",
description="An AI agent that fetches the latest research papers from arXiv based on user-defined keywords and filters.",
prompt_templates=prompt_templates
)
#Search Papers
def search_papers(user_input):
keywords = [kw.strip() for kw in user_input.split(",") if kw.strip()] # Ensure valid keywords
print(f"DEBUG: Received input keywords - {keywords}") # Debug user input
if not keywords:
print("DEBUG: No valid keywords provided.")
return "Error: Please enter at least one valid keyword."
results = fetch_latest_arxiv_papers(keywords, num_results=3) # Fetch 3 results
print(f"DEBUG: Results received - {results}") # Debug function output
# Check if the API returned an error
if isinstance(results, list) and len(results) > 0 and "error" in results[0]:
return results[0]["error"] # Return the error message directly
# Format results only if valid papers exist
if isinstance(results, list) and results and isinstance(results[0], dict):
formatted_results = "\n\n".join([
f"---\n\n"
f"📌 **Title:** {paper['title']}\n\n"
f"👨‍🔬 **Authors:** {paper['authors']}\n\n"
f"📅 **Year:** {paper['year']}\n\n"
f"📖 **Abstract:** {paper['abstract'][:500]}... *(truncated for readability)*\n\n"
f"[🔗 Read Full Paper]({paper['link']})\n\n"
for paper in results
])
return formatted_results
print("DEBUG: No results found.")
return "No results found. Try different keywords."
# Create Gradio UI
with gr.Blocks() as demo:
gr.Markdown("# ScholarAgent")
keyword_input = gr.Textbox(label="Enter keywords(comma-separated) or even full sentences ", placeholder="e.g., deep learning, reinforcement learning or NLP in finance or Deep learning in Medicine")
output_display = gr.Markdown()
search_button = gr.Button("Search")
search_button.click(search_papers, inputs=[keyword_input], outputs=[output_display])
print("DEBUG: Gradio UI is running. Waiting for user input...")
# Launch Gradio App
demo.launch()