File size: 11,122 Bytes
79b8e3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cdbdc2
79b8e3b
 
 
6cdbdc2
79b8e3b
6cdbdc2
79b8e3b
6cdbdc2
79b8e3b
6cdbdc2
79b8e3b
 
 
 
 
 
 
 
 
6cdbdc2
79b8e3b
6cdbdc2
79b8e3b
 
 
6cdbdc2
ebd9098
79b8e3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8267210
79b8e3b
 
8267210
79b8e3b
 
 
 
 
 
 
 
 
8267210
79b8e3b
 
8267210
79b8e3b
 
 
422754d
79b8e3b
 
28fc30b
79b8e3b
 
422754d
79b8e3b
 
28fc30b
79b8e3b
 
 
 
 
bde3c06
41b209f
 
 
bde3c06
41b209f
 
 
 
bde3c06
41b209f
6cdbdc2
bde3c06
 
 
 
 
 
 
41b209f
 
85e3933
bde3c06
a1941ae
bde3c06
1d916f0
 
 
 
 
 
 
0d55049
41b209f
bde3c06
b81895b
bde3c06
 
 
 
 
 
d54a2bd
41b209f
d54a2bd
b81895b
bde3c06
41b209f
d54a2bd
41b209f
 
 
 
d54a2bd
 
47b1f89
41b209f
 
0f668a0
bde3c06
41b209f
bde3c06
41b209f
d54a2bd
bde3c06
 
 
 
 
41b209f
85e3933
bde3c06
41b209f
b81895b
bde3c06
d54a2bd
b81895b
41b209f
d54a2bd
41b209f
48aa5eb
bde3c06
 
47b1f89
bde3c06
47b1f89
48aa5eb
bde3c06
 
 
 
 
47b1f89
bde3c06
85e3933
47b1f89
bde3c06
47b1f89
 
bde3c06
2e6775a
 
 
41b209f
2e6775a
 
 
bde3c06
 
 
 
 
2e6775a
 
c02e3db
bde3c06
2e6775a
 
bde3c06
2e6775a
 
 
 
 
bde3c06
2e6775a
 
 
47b1f89
41b209f
bde3c06
 
 
 
acce4ba
bde3c06
 
 
acce4ba
bde3c06
 
 
 
 
 
 
 
 
acce4ba
bde3c06
cde10e2
 
 
bde3c06
cde10e2
 
 
acce4ba
 
bde3c06
 
 
 
 
 
 
 
 
 
 
 
41b209f
bde3c06
41b209f
 
bde3c06
41b209f
bcdfde6
47b1f89
bde3c06
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
# # import feedparser
# # import urllib.parse
# # import yaml
# # import gradio as gr
# # from smolagents import CodeAgent, HfApiModel, tool
# # from tools.final_answer import FinalAnswerTool

# # @tool
# # def fetch_latest_arxiv_papers(keywords: list, num_results: int = 3) -> list:
# #     """Fetches the latest research papers from arXiv based on provided keywords.

# #     Args:
# #         keywords: A list of keywords to search for relevant papers.
# #         num_results: The number of papers to fetch (default is 3).

# #     Returns:
# #         A list of dictionaries containing:
# #             - "title": The title of the research paper.
# #             - "authors": The authors of the paper.
# #             - "year": The publication year.
# #             - "abstract": A summary of the research paper.
# #             - "link": A direct link to the paper on arXiv.
# #     """
# #     try:
# #         print(f"DEBUG: Searching arXiv papers with keywords: {keywords}")  # Debug input
        
# #         #Properly format query with +AND+ for multiple keywords
# #         query = "+AND+".join([f"all:{kw}" for kw in keywords])  
# #         query_encoded = urllib.parse.quote(query)  # Encode spaces and special characters
        
# #         url = f"http://export.arxiv.org/api/query?search_query={query_encoded}&start=0&max_results={num_results}&sortBy=submittedDate&sortOrder=descending"
        
# #         print(f"DEBUG: Query URL - {url}")  # Debug URL
        
# #         feed = feedparser.parse(url)

# #         papers = []
# #         for entry in feed.entries:
# #             papers.append({
# #                 "title": entry.title,
# #                 "authors": ", ".join(author.name for author in entry.authors),
# #                 "year": entry.published[:4],  # Extract year
# #                 "abstract": entry.summary,
# #                 "link": entry.link
# #             })

# #         return papers

# #     except Exception as e:
# #         print(f"ERROR: {str(e)}")  # Debug errors
# #         return [f"Error fetching research papers: {str(e)}"]


# #"""------Applied BM25 search for paper retrival------"""
# # from rank_bm25 import BM25Okapi
# # import nltk

# # import os
# # import shutil


# # nltk_data_path = os.path.join(nltk.data.path[0], "tokenizers", "punkt")
# # if os.path.exists(nltk_data_path):
# #     shutil.rmtree(nltk_data_path)  # Remove corrupted version

# # print("Removed old NLTK 'punkt' data. Reinstalling...")

# # # Step 2: Download the correct 'punkt' tokenizer
# # nltk.download("punkt_tab")

# # print("Successfully installed 'punkt'!")


# # @tool  # Register the function properly as a SmolAgents tool
# # def fetch_latest_arxiv_papers(keywords: list, num_results: int = 5) -> list:
# #     """Fetches and ranks arXiv papers using BM25 keyword relevance.

# #     Args:
# #         keywords: List of keywords for search.
# #         num_results: Number of results to return.

# #     Returns:
# #         List of the most relevant papers based on BM25 ranking.
# #     """
# #     try:
# #         print(f"DEBUG: Searching arXiv papers with keywords: {keywords}")

# #         # Use a general keyword search (without `ti:` and `abs:`)
# #         query = "+AND+".join([f"all:{kw}" for kw in keywords])  
# #         query_encoded = urllib.parse.quote(query)
# #         url = f"http://export.arxiv.org/api/query?search_query={query_encoded}&start=0&max_results=50&sortBy=submittedDate&sortOrder=descending"

# #         print(f"DEBUG: Query URL - {url}")

# #         feed = feedparser.parse(url)
# #         papers = []

# #         # Extract papers from arXiv
# #         for entry in feed.entries:
# #             papers.append({
# #                 "title": entry.title,
# #                 "authors": ", ".join(author.name for author in entry.authors),
# #                 "year": entry.published[:4],
# #                 "abstract": entry.summary,
# #                 "link": entry.link
# #             })

# #         if not papers:
# #             return [{"error": "No results found. Try different keywords."}]

# #         # Apply BM25 ranking
# #         tokenized_corpus = [nltk.word_tokenize(paper["title"].lower() + " " + paper["abstract"].lower()) for paper in papers]
# #         bm25 = BM25Okapi(tokenized_corpus)

# #         tokenized_query = nltk.word_tokenize(" ".join(keywords).lower())
# #         scores = bm25.get_scores(tokenized_query)

# #         # Sort papers based on BM25 score
# #         ranked_papers = sorted(zip(papers, scores), key=lambda x: x[1], reverse=True)

# #         # Return the most relevant ones
# #         return [paper[0] for paper in ranked_papers[:num_results]]

# #     except Exception as e:
# #         print(f"ERROR: {str(e)}")
# #         return [{"error": f"Error fetching research papers: {str(e)}"}]


"""------Applied TF-IDF for better semantic search------"""
import feedparser
import urllib.parse
import yaml
from tools.final_answer import FinalAnswerTool
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import gradio as gr
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import nltk

import datetime
import requests
import pytz
from tools.final_answer import FinalAnswerTool

from Gradio_UI import GradioUI

nltk.download("stopwords")
from nltk.corpus import stopwords

@tool  # ✅ Register the function properly as a SmolAgents tool
def fetch_latest_arxiv_papers(keywords: list, num_results: int = 5) -> list:
    """Fetches and ranks arXiv papers using TF-IDF and Cosine Similarity.

    Args:
        keywords: List of keywords for search.
        num_results: Number of results to return.

    Returns:
        List of the most relevant papers based on TF-IDF ranking.
    """
    try:
        print(f"DEBUG: Searching arXiv papers with keywords: {keywords}")

        # Use a general keyword search
        query = "+AND+".join([f"all:{kw}" for kw in keywords])  
        query_encoded = urllib.parse.quote(query)
        url = f"http://export.arxiv.org/api/query?search_query={query_encoded}&start=0&max_results=50&sortBy=submittedDate&sortOrder=descending"

        print(f"DEBUG: Query URL - {url}")

        feed = feedparser.parse(url)
        papers = []

        # Extract papers from arXiv
        for entry in feed.entries:
            papers.append({
                "title": entry.title,
                "authors": ", ".join(author.name for author in entry.authors),
                "year": entry.published[:4],
                "abstract": entry.summary,
                "link": entry.link
            })

        if not papers:
            return [{"error": "No results found. Try different keywords."}]

        # Prepare TF-IDF Vectorization
        corpus = [paper["title"] + " " + paper["abstract"] for paper in papers]
        vectorizer = TfidfVectorizer(stop_words=stopwords.words('english'))  # Remove stopwords
        tfidf_matrix = vectorizer.fit_transform(corpus)

        # Transform Query into TF-IDF Vector
        query_str = " ".join(keywords)
        query_vec = vectorizer.transform([query_str])

        #Compute Cosine Similarity
        similarity_scores = cosine_similarity(query_vec, tfidf_matrix).flatten()

        #Sort papers based on similarity score
        ranked_papers = sorted(zip(papers, similarity_scores), key=lambda x: x[1], reverse=True)

        # Return the most relevant papers
        return [paper[0] for paper in ranked_papers[:num_results]]

    except Exception as e:
        print(f"ERROR: {str(e)}")
        return [{"error": f"Error fetching research papers: {str(e)}"}]
@tool
def get_current_time_in_timezone(timezone: str) -> str:
    """A tool that fetches the current local time in a specified timezone.
    Args:
        timezone: A string representing a valid timezone (e.g., 'America/New_York').
    """
    try:
        # Create timezone object
        tz = pytz.timezone(timezone)
        # Get current time in that timezone
        local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
        return f"The current local time in {timezone} is: {local_time}"
    except Exception as e:
        return f"Error fetching time for timezone '{timezone}': {str(e)}"


final_answer = FinalAnswerTool()


# AI Model
model = HfApiModel(
    max_tokens=2096,
    temperature=0.5,
    model_id='Qwen/Qwen2.5-Coder-32B-Instruct',
    custom_role_conversions=None,
)

# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)


# Load prompt templates
with open("prompts.yaml", 'r') as stream:
    prompt_templates = yaml.safe_load(stream)

# Create the AI Agent
agent = CodeAgent(
    model=model,
    tools=[final_answer,fetch_latest_arxiv_papers],  # Add your tools here 
    max_steps=6,
    verbosity_level=1,
    grammar=None,
    planning_interval=None,
    name="ScholarAgent",
    description="An AI agent that fetches the latest research papers from arXiv based on user-defined keywords and filters.",
    prompt_templates=prompt_templates
)



#Search Papers
def search_papers(user_input):
    keywords = [kw.strip() for kw in user_input.split(",") if kw.strip()]  # Ensure valid keywords
    print(f"DEBUG: Received input keywords - {keywords}")  # Debug user input
    
    if not keywords:
        print("DEBUG: No valid keywords provided.")
        return "Error: Please enter at least one valid keyword."
    
    results = fetch_latest_arxiv_papers(keywords, num_results=3)  # Fetch 3 results
    print(f"DEBUG: Results received - {results}")  # Debug function output

    # Check if the API returned an error
    if isinstance(results, list) and len(results) > 0 and "error" in results[0]:
        return results[0]["error"]  # Return the error message directly

    # Format results only if valid papers exist
    if isinstance(results, list) and results and isinstance(results[0], dict):
        formatted_results = "\n\n".join([
            f"---\n\n"
            f"📌 **Title:** {paper['title']}\n\n"
            f"👨‍🔬 **Authors:** {paper['authors']}\n\n"
            f"📅 **Year:** {paper['year']}\n\n"
            f"📖 **Abstract:** {paper['abstract'][:500]}... *(truncated for readability)*\n\n"
            f"[🔗 Read Full Paper]({paper['link']})\n\n"
            for paper in results
        ])
        return formatted_results

    print("DEBUG: No results found.")
    return "No results found. Try different keywords."



# Create Gradio UI
with gr.Blocks() as demo:
    gr.Markdown("# ScholarAgent")
    keyword_input = gr.Textbox(label="Enter keywords(comma-separated) or even full sentences ", placeholder="e.g., deep learning, reinforcement learning or NLP in finance or Deep learning in Medicine")
    output_display = gr.Markdown()
    search_button = gr.Button("Search")

    search_button.click(search_papers, inputs=[keyword_input], outputs=[output_display])

    print("DEBUG: Gradio UI is running. Waiting for user input...")

# Launch Gradio App
demo.launch()