Spaces:
Running
Running
File size: 11,122 Bytes
79b8e3b 6cdbdc2 79b8e3b 6cdbdc2 79b8e3b 6cdbdc2 79b8e3b 6cdbdc2 79b8e3b 6cdbdc2 79b8e3b 6cdbdc2 79b8e3b 6cdbdc2 79b8e3b 6cdbdc2 ebd9098 79b8e3b 8267210 79b8e3b 8267210 79b8e3b 8267210 79b8e3b 8267210 79b8e3b 422754d 79b8e3b 28fc30b 79b8e3b 422754d 79b8e3b 28fc30b 79b8e3b bde3c06 41b209f bde3c06 41b209f bde3c06 41b209f 6cdbdc2 bde3c06 41b209f 85e3933 bde3c06 a1941ae bde3c06 1d916f0 0d55049 41b209f bde3c06 b81895b bde3c06 d54a2bd 41b209f d54a2bd b81895b bde3c06 41b209f d54a2bd 41b209f d54a2bd 47b1f89 41b209f 0f668a0 bde3c06 41b209f bde3c06 41b209f d54a2bd bde3c06 41b209f 85e3933 bde3c06 41b209f b81895b bde3c06 d54a2bd b81895b 41b209f d54a2bd 41b209f 48aa5eb bde3c06 47b1f89 bde3c06 47b1f89 48aa5eb bde3c06 47b1f89 bde3c06 85e3933 47b1f89 bde3c06 47b1f89 bde3c06 2e6775a 41b209f 2e6775a bde3c06 2e6775a c02e3db bde3c06 2e6775a bde3c06 2e6775a bde3c06 2e6775a 47b1f89 41b209f bde3c06 acce4ba bde3c06 acce4ba bde3c06 acce4ba bde3c06 cde10e2 bde3c06 cde10e2 acce4ba bde3c06 41b209f bde3c06 41b209f bde3c06 41b209f bcdfde6 47b1f89 bde3c06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
# # import feedparser
# # import urllib.parse
# # import yaml
# # import gradio as gr
# # from smolagents import CodeAgent, HfApiModel, tool
# # from tools.final_answer import FinalAnswerTool
# # @tool
# # def fetch_latest_arxiv_papers(keywords: list, num_results: int = 3) -> list:
# # """Fetches the latest research papers from arXiv based on provided keywords.
# # Args:
# # keywords: A list of keywords to search for relevant papers.
# # num_results: The number of papers to fetch (default is 3).
# # Returns:
# # A list of dictionaries containing:
# # - "title": The title of the research paper.
# # - "authors": The authors of the paper.
# # - "year": The publication year.
# # - "abstract": A summary of the research paper.
# # - "link": A direct link to the paper on arXiv.
# # """
# # try:
# # print(f"DEBUG: Searching arXiv papers with keywords: {keywords}") # Debug input
# # #Properly format query with +AND+ for multiple keywords
# # query = "+AND+".join([f"all:{kw}" for kw in keywords])
# # query_encoded = urllib.parse.quote(query) # Encode spaces and special characters
# # url = f"http://export.arxiv.org/api/query?search_query={query_encoded}&start=0&max_results={num_results}&sortBy=submittedDate&sortOrder=descending"
# # print(f"DEBUG: Query URL - {url}") # Debug URL
# # feed = feedparser.parse(url)
# # papers = []
# # for entry in feed.entries:
# # papers.append({
# # "title": entry.title,
# # "authors": ", ".join(author.name for author in entry.authors),
# # "year": entry.published[:4], # Extract year
# # "abstract": entry.summary,
# # "link": entry.link
# # })
# # return papers
# # except Exception as e:
# # print(f"ERROR: {str(e)}") # Debug errors
# # return [f"Error fetching research papers: {str(e)}"]
# #"""------Applied BM25 search for paper retrival------"""
# # from rank_bm25 import BM25Okapi
# # import nltk
# # import os
# # import shutil
# # nltk_data_path = os.path.join(nltk.data.path[0], "tokenizers", "punkt")
# # if os.path.exists(nltk_data_path):
# # shutil.rmtree(nltk_data_path) # Remove corrupted version
# # print("Removed old NLTK 'punkt' data. Reinstalling...")
# # # Step 2: Download the correct 'punkt' tokenizer
# # nltk.download("punkt_tab")
# # print("Successfully installed 'punkt'!")
# # @tool # Register the function properly as a SmolAgents tool
# # def fetch_latest_arxiv_papers(keywords: list, num_results: int = 5) -> list:
# # """Fetches and ranks arXiv papers using BM25 keyword relevance.
# # Args:
# # keywords: List of keywords for search.
# # num_results: Number of results to return.
# # Returns:
# # List of the most relevant papers based on BM25 ranking.
# # """
# # try:
# # print(f"DEBUG: Searching arXiv papers with keywords: {keywords}")
# # # Use a general keyword search (without `ti:` and `abs:`)
# # query = "+AND+".join([f"all:{kw}" for kw in keywords])
# # query_encoded = urllib.parse.quote(query)
# # url = f"http://export.arxiv.org/api/query?search_query={query_encoded}&start=0&max_results=50&sortBy=submittedDate&sortOrder=descending"
# # print(f"DEBUG: Query URL - {url}")
# # feed = feedparser.parse(url)
# # papers = []
# # # Extract papers from arXiv
# # for entry in feed.entries:
# # papers.append({
# # "title": entry.title,
# # "authors": ", ".join(author.name for author in entry.authors),
# # "year": entry.published[:4],
# # "abstract": entry.summary,
# # "link": entry.link
# # })
# # if not papers:
# # return [{"error": "No results found. Try different keywords."}]
# # # Apply BM25 ranking
# # tokenized_corpus = [nltk.word_tokenize(paper["title"].lower() + " " + paper["abstract"].lower()) for paper in papers]
# # bm25 = BM25Okapi(tokenized_corpus)
# # tokenized_query = nltk.word_tokenize(" ".join(keywords).lower())
# # scores = bm25.get_scores(tokenized_query)
# # # Sort papers based on BM25 score
# # ranked_papers = sorted(zip(papers, scores), key=lambda x: x[1], reverse=True)
# # # Return the most relevant ones
# # return [paper[0] for paper in ranked_papers[:num_results]]
# # except Exception as e:
# # print(f"ERROR: {str(e)}")
# # return [{"error": f"Error fetching research papers: {str(e)}"}]
"""------Applied TF-IDF for better semantic search------"""
import feedparser
import urllib.parse
import yaml
from tools.final_answer import FinalAnswerTool
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import gradio as gr
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import nltk
import datetime
import requests
import pytz
from tools.final_answer import FinalAnswerTool
from Gradio_UI import GradioUI
nltk.download("stopwords")
from nltk.corpus import stopwords
@tool # ✅ Register the function properly as a SmolAgents tool
def fetch_latest_arxiv_papers(keywords: list, num_results: int = 5) -> list:
"""Fetches and ranks arXiv papers using TF-IDF and Cosine Similarity.
Args:
keywords: List of keywords for search.
num_results: Number of results to return.
Returns:
List of the most relevant papers based on TF-IDF ranking.
"""
try:
print(f"DEBUG: Searching arXiv papers with keywords: {keywords}")
# Use a general keyword search
query = "+AND+".join([f"all:{kw}" for kw in keywords])
query_encoded = urllib.parse.quote(query)
url = f"http://export.arxiv.org/api/query?search_query={query_encoded}&start=0&max_results=50&sortBy=submittedDate&sortOrder=descending"
print(f"DEBUG: Query URL - {url}")
feed = feedparser.parse(url)
papers = []
# Extract papers from arXiv
for entry in feed.entries:
papers.append({
"title": entry.title,
"authors": ", ".join(author.name for author in entry.authors),
"year": entry.published[:4],
"abstract": entry.summary,
"link": entry.link
})
if not papers:
return [{"error": "No results found. Try different keywords."}]
# Prepare TF-IDF Vectorization
corpus = [paper["title"] + " " + paper["abstract"] for paper in papers]
vectorizer = TfidfVectorizer(stop_words=stopwords.words('english')) # Remove stopwords
tfidf_matrix = vectorizer.fit_transform(corpus)
# Transform Query into TF-IDF Vector
query_str = " ".join(keywords)
query_vec = vectorizer.transform([query_str])
#Compute Cosine Similarity
similarity_scores = cosine_similarity(query_vec, tfidf_matrix).flatten()
#Sort papers based on similarity score
ranked_papers = sorted(zip(papers, similarity_scores), key=lambda x: x[1], reverse=True)
# Return the most relevant papers
return [paper[0] for paper in ranked_papers[:num_results]]
except Exception as e:
print(f"ERROR: {str(e)}")
return [{"error": f"Error fetching research papers: {str(e)}"}]
@tool
def get_current_time_in_timezone(timezone: str) -> str:
"""A tool that fetches the current local time in a specified timezone.
Args:
timezone: A string representing a valid timezone (e.g., 'America/New_York').
"""
try:
# Create timezone object
tz = pytz.timezone(timezone)
# Get current time in that timezone
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
return f"The current local time in {timezone} is: {local_time}"
except Exception as e:
return f"Error fetching time for timezone '{timezone}': {str(e)}"
final_answer = FinalAnswerTool()
# AI Model
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',
custom_role_conversions=None,
)
# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
# Load prompt templates
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
# Create the AI Agent
agent = CodeAgent(
model=model,
tools=[final_answer,fetch_latest_arxiv_papers], # Add your tools here
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name="ScholarAgent",
description="An AI agent that fetches the latest research papers from arXiv based on user-defined keywords and filters.",
prompt_templates=prompt_templates
)
#Search Papers
def search_papers(user_input):
keywords = [kw.strip() for kw in user_input.split(",") if kw.strip()] # Ensure valid keywords
print(f"DEBUG: Received input keywords - {keywords}") # Debug user input
if not keywords:
print("DEBUG: No valid keywords provided.")
return "Error: Please enter at least one valid keyword."
results = fetch_latest_arxiv_papers(keywords, num_results=3) # Fetch 3 results
print(f"DEBUG: Results received - {results}") # Debug function output
# Check if the API returned an error
if isinstance(results, list) and len(results) > 0 and "error" in results[0]:
return results[0]["error"] # Return the error message directly
# Format results only if valid papers exist
if isinstance(results, list) and results and isinstance(results[0], dict):
formatted_results = "\n\n".join([
f"---\n\n"
f"📌 **Title:** {paper['title']}\n\n"
f"👨🔬 **Authors:** {paper['authors']}\n\n"
f"📅 **Year:** {paper['year']}\n\n"
f"📖 **Abstract:** {paper['abstract'][:500]}... *(truncated for readability)*\n\n"
f"[🔗 Read Full Paper]({paper['link']})\n\n"
for paper in results
])
return formatted_results
print("DEBUG: No results found.")
return "No results found. Try different keywords."
# Create Gradio UI
with gr.Blocks() as demo:
gr.Markdown("# ScholarAgent")
keyword_input = gr.Textbox(label="Enter keywords(comma-separated) or even full sentences ", placeholder="e.g., deep learning, reinforcement learning or NLP in finance or Deep learning in Medicine")
output_display = gr.Markdown()
search_button = gr.Button("Search")
search_button.click(search_papers, inputs=[keyword_input], outputs=[output_display])
print("DEBUG: Gradio UI is running. Waiting for user input...")
# Launch Gradio App
demo.launch()
|