RPC-Chat / rpc.py
pedrocas15's picture
Update rpc.py
291afac verified
import tensorflow as tf
from tensorflow import keras
from keras.layers import *
import keras_nlp
import subprocess
import math
import json
import spacy
from transformers import AutoTokenizer
from tokenizers import AddedToken
# Config
input_size = 320#512
embed_dim = 128
# Tokenizer
tokenizer = AutoTokenizer.from_pretrained('google/t5-v1_1-base')
tokenizer.add_tokens(AddedToken("\n", normalized=False))
tokenizer.add_tokens(AddedToken("<s>", normalized=False))
vocab_size = len(tokenizer.get_vocab().keys())
print("vocab_size:", vocab_size)
print("pad token id:", tokenizer.pad_token)
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_lg"], check=True)
nlp = spacy.load("en_core_web_lg")
nlp.max_length = 2000000
selected = {'NUM', 'PROPN'}
alltoks = sorted(list(tokenizer.get_vocab().items()), key=lambda x:x[1])
all_toks_text = "\n".join([t[0].replace("▁", "") for t in alltoks])
doc = nlp(all_toks_text)
carry_toks = set()
i = 0
for ii, token in enumerate(doc):
if str(token) in alltoks[i][0]: pass
else: i += 1
if str(token) in alltoks[i][0] and token.pos_ in selected and i > 100:
if (token.pos_ != "PROPN" or alltoks[i][0].replace("▁", "")[0].isupper()):
carry_toks.add(alltoks[i][1])
print(len(carry_toks))
# Masked Accuracy Metric
def masked_accuracy(y_true, y_pred, padding_token=tokenizer.pad_token_id):
y_true = tf.cast(y_true, tf.int32)
y_pred = tf.cast(tf.argmax(y_pred, axis=-1), tf.int32)
mask = tf.cast(tf.not_equal(y_true, padding_token), tf.float32)
matches = tf.cast(tf.equal(y_true, y_pred), tf.float32)
accuracy = tf.reduce_sum(matches * mask) / tf.reduce_sum(mask)
return accuracy
# Embedding Layer
class SharedEmbedding(tf.keras.layers.Layer):
def __init__(self, vocab_size, embed_dim, **kwargs):
super(SharedEmbedding, self).__init__(**kwargs)
self.vocab_size = vocab_size
self.embed_dim = embed_dim
def build(self, input_shape):
self.shared_weights = self.add_weight(
shape=(self.vocab_size, self.embed_dim),
initializer='random_normal',
trainable=True,
name='shared_weights'
)
super(SharedEmbedding, self).build(input_shape)
def call(self, inputs, mode='embedding', temp=0.1):
if mode == 'embedding':
return tf.nn.embedding_lookup(self.shared_weights, inputs)
elif mode == 'classify':
return tf.nn.softmax(tf.matmul(inputs, self.shared_weights, transpose_b=True), axis=-1)
# Attention Layer
class DiffAttention(keras.layers.Layer):
def __init__(self, depth, **kwargs):
super(DiffAttention, self).__init__(**kwargs)
self.lambda_init = 0.8 - 0.6 * math.exp(-0.3 * depth)
def build(self, input_shape):
self.embed_dim = input_shape[-1]
self.input_size = input_shape[-2]
self.mask = tf.where(tf.linalg.band_part(tf.ones((input_shape[-2], input_shape[-2])), -1, 0) == 1.0, 0.0, float("-inf"))
self.range_do = -tf.range(input_shape[-2])-1
self.range_undo = tf.range(input_shape[-2])+1
self.Q = self.add_weight(name='kernelQ',
shape=(input_shape[-1], input_shape[-1]),
initializer='uniform',
trainable=True)
self.K = self.add_weight(name='kernelK',
shape=(input_shape[-1], input_shape[-1]),
initializer='uniform',
trainable=True)
self.V = self.add_weight(name='kernelV',
shape=(input_shape[-1], input_shape[-1]),
initializer='uniform',
trainable=True)
initializer = tf.keras.initializers.RandomNormal(mean=0.0, stddev=0.1)
self.lambda_q1 = self.add_weight(
shape=(input_shape[-1],), initializer=initializer, trainable=True, name="lambda_q1"
)
self.lambda_k1 = self.add_weight(
shape=(input_shape[-1],), initializer=initializer, trainable=True, name="lambda_k1"
)
self.lambda_q2 = self.add_weight(
shape=(input_shape[-1],), initializer=initializer, trainable=True, name="lambda_q2"
)
self.lambda_k2 = self.add_weight(
shape=(input_shape[-1],), initializer=initializer, trainable=True, name="lambda_k2"
)
super(DiffAttention, self).build(input_shape)
def roll_embeddings(self, tensor, shift_values):
batch_size, time_size, embed_dim = tensor.shape
if batch_size is None: return tensor
shift_matrix = tf.reshape(shift_values, (1, -1, 1))
shift_matrix = tf.tile(shift_matrix, [batch_size, 1, embed_dim])
indices = tf.range(embed_dim)
indices_matrix = tf.tile(indices, [batch_size * time_size])
indices_matrix = tf.reshape(indices_matrix, (batch_size, time_size, embed_dim))
new_indices = (indices_matrix + shift_matrix) % embed_dim
rolled_tensor = tf.gather(tensor, new_indices, batch_dims=2)
return rolled_tensor
def call(self, x, pos, pos_src):
v = x @ self.V
q = tf.transpose(tf.reshape(x @ self.Q, (-1, self.input_size, 2, self.embed_dim//2)), perm=[0, 2, 1, 3])
k = tf.transpose(tf.reshape(x @ self.K, (-1, self.input_size, 2, self.embed_dim//2)), perm=[0, 2, 1, 3])
atti = tf.matmul(q, k, transpose_b=True)
attp = tf.matmul(q, pos, transpose_b=True)
attp = self.roll_embeddings(tf.reshape(attp, (-1, self.input_size, self.input_size)), self.range_do)
attp = tf.reshape(attp, (-1, 2, self.input_size, self.input_size))
att = atti + attp
att = tf.nn.softmax((att / math.sqrt(self.embed_dim)) + self.mask, axis=-1)
att1 = att[:, 0]
att2 = att[:, 1]
# Differential attention
lambda_1 = tf.math.exp(tf.reduce_sum(self.lambda_q1 * self.lambda_k1, axis=-1))
lambda_2 = tf.math.exp(tf.reduce_sum(self.lambda_q2 * self.lambda_k2, axis=-1))
lambda_full = lambda_1 - lambda_2 + self.lambda_init
att = att1 - lambda_full * att2
out = att @ v
out = out * (1 - self.lambda_init)
return out
# Import Model
model = keras.models.load_model(
"rpc.keras",
custom_objects={
"DiffAttention" : DiffAttention,
"SharedEmbedding" : SharedEmbedding,
"masked_accuracy" : masked_accuracy
}
)
encoder = keras.Model(inputs=model.layers[0].input, outputs=model.layers[-1].output)
encoder.summary()
# Vectorize Function
def vectorize_texts(all_texts):
batch_size = 128
vects = []
for i in range(0, len(all_texts), batch_size):
texts = all_texts[i:i+batch_size]
toks = [text + ([tokenizer.pad_token_id] * (input_size - len(text))) for text in texts]
if len(toks) > 0:
toks = tf.constant(toks, shape=(len(toks), input_size))
vect = encoder.predict(toks, verbose=0)
for v, t in zip(vect, texts):
vects.append(v[:len(t), :])
return tf.concat(vects, axis=0).numpy()
# Import Database and All Toks
index = None
all_toks = None
index_type = None
def load_index(index_path="/dev/shm/rpc-vecdb/index", idx_type="ngt"):
global index
global all_toks
global index_type
index_type = idx_type
if idx_type == "ngt":
import ngtpy
index = ngtpy.Index(index_path, read_only=True)
elif idx_type == "faiss":
import faiss
index = faiss.read_index(index_path + "/index.faiss")
else:
raise ValueError("Unknown index type")
with open(index_path + "/all_toks.json", "r") as f:
all_toks = json.loads(f.read())
# Generate Function
def generate(text, use_rpc=True, max_tokens=128):
enc_text = tokenizer.encode(text, add_special_tokens=False)
text = tokenizer.decode(enc_text)
tok = None
i = 0
while i < max_tokens and tok != vocab_size - 2:
enc_text = enc_text[-input_size:]
if use_rpc:
xq = vectorize_texts([enc_text])[-1]
if index_type == "ngt":
_id = index.search(xq, size=1, epsilon=1)[0][0]
else:
_id = index.search(xq.reshape((1, -1)), 1)[1][0][0]
if all_toks[_id] in carry_toks:
tmp = tf.argmax(tf.matmul(xq.reshape((1, -1)), encoder.layers[1].shared_weights, transpose_b=True), axis=-1).numpy()[0]
if tmp in enc_text:
tok = tmp
else: tok = all_toks[_id]
else:
tok = all_toks[_id]
else:
ins = enc_text + [tokenizer.pad_token_id] * (input_size - len(enc_text))
ins = tf.constant(ins, shape=(1, input_size))
res = model.predict(ins, verbose=0)[0][len(enc_text)-1]
tok = tf.argmax(res, axis=-1).numpy().tolist()
enc_text += [tok]
new_text = tokenizer.decode(enc_text)
res = new_text[len(text):]
text = new_text
yield res