Spaces:
Runtime error
Runtime error
import tensorflow as tf | |
from tensorflow import keras | |
from keras.layers import * | |
import keras_nlp | |
import subprocess | |
import math | |
import json | |
import spacy | |
from transformers import AutoTokenizer | |
from tokenizers import AddedToken | |
# Config | |
input_size = 320#512 | |
embed_dim = 128 | |
# Tokenizer | |
tokenizer = AutoTokenizer.from_pretrained('google/t5-v1_1-base') | |
tokenizer.add_tokens(AddedToken("\n", normalized=False)) | |
tokenizer.add_tokens(AddedToken("<s>", normalized=False)) | |
vocab_size = len(tokenizer.get_vocab().keys()) | |
print("vocab_size:", vocab_size) | |
print("pad token id:", tokenizer.pad_token) | |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_lg"], check=True) | |
nlp = spacy.load("en_core_web_lg") | |
nlp.max_length = 2000000 | |
selected = {'NUM', 'PROPN'} | |
alltoks = sorted(list(tokenizer.get_vocab().items()), key=lambda x:x[1]) | |
all_toks_text = "\n".join([t[0].replace("▁", "") for t in alltoks]) | |
doc = nlp(all_toks_text) | |
carry_toks = set() | |
i = 0 | |
for ii, token in enumerate(doc): | |
if str(token) in alltoks[i][0]: pass | |
else: i += 1 | |
if str(token) in alltoks[i][0] and token.pos_ in selected and i > 100: | |
if (token.pos_ != "PROPN" or alltoks[i][0].replace("▁", "")[0].isupper()): | |
carry_toks.add(alltoks[i][1]) | |
print(len(carry_toks)) | |
# Masked Accuracy Metric | |
def masked_accuracy(y_true, y_pred, padding_token=tokenizer.pad_token_id): | |
y_true = tf.cast(y_true, tf.int32) | |
y_pred = tf.cast(tf.argmax(y_pred, axis=-1), tf.int32) | |
mask = tf.cast(tf.not_equal(y_true, padding_token), tf.float32) | |
matches = tf.cast(tf.equal(y_true, y_pred), tf.float32) | |
accuracy = tf.reduce_sum(matches * mask) / tf.reduce_sum(mask) | |
return accuracy | |
# Embedding Layer | |
class SharedEmbedding(tf.keras.layers.Layer): | |
def __init__(self, vocab_size, embed_dim, **kwargs): | |
super(SharedEmbedding, self).__init__(**kwargs) | |
self.vocab_size = vocab_size | |
self.embed_dim = embed_dim | |
def build(self, input_shape): | |
self.shared_weights = self.add_weight( | |
shape=(self.vocab_size, self.embed_dim), | |
initializer='random_normal', | |
trainable=True, | |
name='shared_weights' | |
) | |
super(SharedEmbedding, self).build(input_shape) | |
def call(self, inputs, mode='embedding', temp=0.1): | |
if mode == 'embedding': | |
return tf.nn.embedding_lookup(self.shared_weights, inputs) | |
elif mode == 'classify': | |
return tf.nn.softmax(tf.matmul(inputs, self.shared_weights, transpose_b=True), axis=-1) | |
# Attention Layer | |
class DiffAttention(keras.layers.Layer): | |
def __init__(self, depth, **kwargs): | |
super(DiffAttention, self).__init__(**kwargs) | |
self.lambda_init = 0.8 - 0.6 * math.exp(-0.3 * depth) | |
def build(self, input_shape): | |
self.embed_dim = input_shape[-1] | |
self.input_size = input_shape[-2] | |
self.mask = tf.where(tf.linalg.band_part(tf.ones((input_shape[-2], input_shape[-2])), -1, 0) == 1.0, 0.0, float("-inf")) | |
self.range_do = -tf.range(input_shape[-2])-1 | |
self.range_undo = tf.range(input_shape[-2])+1 | |
self.Q = self.add_weight(name='kernelQ', | |
shape=(input_shape[-1], input_shape[-1]), | |
initializer='uniform', | |
trainable=True) | |
self.K = self.add_weight(name='kernelK', | |
shape=(input_shape[-1], input_shape[-1]), | |
initializer='uniform', | |
trainable=True) | |
self.V = self.add_weight(name='kernelV', | |
shape=(input_shape[-1], input_shape[-1]), | |
initializer='uniform', | |
trainable=True) | |
initializer = tf.keras.initializers.RandomNormal(mean=0.0, stddev=0.1) | |
self.lambda_q1 = self.add_weight( | |
shape=(input_shape[-1],), initializer=initializer, trainable=True, name="lambda_q1" | |
) | |
self.lambda_k1 = self.add_weight( | |
shape=(input_shape[-1],), initializer=initializer, trainable=True, name="lambda_k1" | |
) | |
self.lambda_q2 = self.add_weight( | |
shape=(input_shape[-1],), initializer=initializer, trainable=True, name="lambda_q2" | |
) | |
self.lambda_k2 = self.add_weight( | |
shape=(input_shape[-1],), initializer=initializer, trainable=True, name="lambda_k2" | |
) | |
super(DiffAttention, self).build(input_shape) | |
def roll_embeddings(self, tensor, shift_values): | |
batch_size, time_size, embed_dim = tensor.shape | |
if batch_size is None: return tensor | |
shift_matrix = tf.reshape(shift_values, (1, -1, 1)) | |
shift_matrix = tf.tile(shift_matrix, [batch_size, 1, embed_dim]) | |
indices = tf.range(embed_dim) | |
indices_matrix = tf.tile(indices, [batch_size * time_size]) | |
indices_matrix = tf.reshape(indices_matrix, (batch_size, time_size, embed_dim)) | |
new_indices = (indices_matrix + shift_matrix) % embed_dim | |
rolled_tensor = tf.gather(tensor, new_indices, batch_dims=2) | |
return rolled_tensor | |
def call(self, x, pos, pos_src): | |
v = x @ self.V | |
q = tf.transpose(tf.reshape(x @ self.Q, (-1, self.input_size, 2, self.embed_dim//2)), perm=[0, 2, 1, 3]) | |
k = tf.transpose(tf.reshape(x @ self.K, (-1, self.input_size, 2, self.embed_dim//2)), perm=[0, 2, 1, 3]) | |
atti = tf.matmul(q, k, transpose_b=True) | |
attp = tf.matmul(q, pos, transpose_b=True) | |
attp = self.roll_embeddings(tf.reshape(attp, (-1, self.input_size, self.input_size)), self.range_do) | |
attp = tf.reshape(attp, (-1, 2, self.input_size, self.input_size)) | |
att = atti + attp | |
att = tf.nn.softmax((att / math.sqrt(self.embed_dim)) + self.mask, axis=-1) | |
att1 = att[:, 0] | |
att2 = att[:, 1] | |
# Differential attention | |
lambda_1 = tf.math.exp(tf.reduce_sum(self.lambda_q1 * self.lambda_k1, axis=-1)) | |
lambda_2 = tf.math.exp(tf.reduce_sum(self.lambda_q2 * self.lambda_k2, axis=-1)) | |
lambda_full = lambda_1 - lambda_2 + self.lambda_init | |
att = att1 - lambda_full * att2 | |
out = att @ v | |
out = out * (1 - self.lambda_init) | |
return out | |
# Import Model | |
model = keras.models.load_model( | |
"rpc.keras", | |
custom_objects={ | |
"DiffAttention" : DiffAttention, | |
"SharedEmbedding" : SharedEmbedding, | |
"masked_accuracy" : masked_accuracy | |
} | |
) | |
encoder = keras.Model(inputs=model.layers[0].input, outputs=model.layers[-1].output) | |
encoder.summary() | |
# Vectorize Function | |
def vectorize_texts(all_texts): | |
batch_size = 128 | |
vects = [] | |
for i in range(0, len(all_texts), batch_size): | |
texts = all_texts[i:i+batch_size] | |
toks = [text + ([tokenizer.pad_token_id] * (input_size - len(text))) for text in texts] | |
if len(toks) > 0: | |
toks = tf.constant(toks, shape=(len(toks), input_size)) | |
vect = encoder.predict(toks, verbose=0) | |
for v, t in zip(vect, texts): | |
vects.append(v[:len(t), :]) | |
return tf.concat(vects, axis=0).numpy() | |
# Import Database and All Toks | |
index = None | |
all_toks = None | |
index_type = None | |
def load_index(index_path="/dev/shm/rpc-vecdb/index", idx_type="ngt"): | |
global index | |
global all_toks | |
global index_type | |
index_type = idx_type | |
if idx_type == "ngt": | |
import ngtpy | |
index = ngtpy.Index(index_path, read_only=True) | |
elif idx_type == "faiss": | |
import faiss | |
index = faiss.read_index(index_path + "/index.faiss") | |
else: | |
raise ValueError("Unknown index type") | |
with open(index_path + "/all_toks.json", "r") as f: | |
all_toks = json.loads(f.read()) | |
# Generate Function | |
def generate(text, use_rpc=True, max_tokens=128): | |
enc_text = tokenizer.encode(text, add_special_tokens=False) | |
text = tokenizer.decode(enc_text) | |
tok = None | |
i = 0 | |
while i < max_tokens and tok != vocab_size - 2: | |
enc_text = enc_text[-input_size:] | |
if use_rpc: | |
xq = vectorize_texts([enc_text])[-1] | |
if index_type == "ngt": | |
_id = index.search(xq, size=1, epsilon=1)[0][0] | |
else: | |
_id = index.search(xq.reshape((1, -1)), 1)[1][0][0] | |
if all_toks[_id] in carry_toks: | |
tmp = tf.argmax(tf.matmul(xq.reshape((1, -1)), encoder.layers[1].shared_weights, transpose_b=True), axis=-1).numpy()[0] | |
if tmp in enc_text: | |
tok = tmp | |
else: tok = all_toks[_id] | |
else: | |
tok = all_toks[_id] | |
else: | |
ins = enc_text + [tokenizer.pad_token_id] * (input_size - len(enc_text)) | |
ins = tf.constant(ins, shape=(1, input_size)) | |
res = model.predict(ins, verbose=0)[0][len(enc_text)-1] | |
tok = tf.argmax(res, axis=-1).numpy().tolist() | |
enc_text += [tok] | |
new_text = tokenizer.decode(enc_text) | |
res = new_text[len(text):] | |
text = new_text | |
yield res |