Spaces:
Runtime error
Runtime error
File size: 9,250 Bytes
0be59b5 8484d37 0be59b5 02480fa 0be59b5 52823c4 0be59b5 8484d37 02480fa 0be59b5 ac2a08a 0be59b5 ac2a08a 0be59b5 ac2a08a 0be59b5 ac2a08a 0be59b5 ac2a08a 0be59b5 ac2a08a 0be59b5 ac2a08a 0be59b5 ac2a08a 291afac ac2a08a 0be59b5 ac2a08a fd69507 ac2a08a 0be59b5 fd69507 0be59b5 fd69507 0be59b5 7ff3f2d b2165fc 0be59b5 fd69507 0be59b5 ac2a08a 0be59b5 ac2a08a 0be59b5 ac2a08a e069448 ac2a08a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
import tensorflow as tf
from tensorflow import keras
from keras.layers import *
import keras_nlp
import subprocess
import math
import json
import spacy
from transformers import AutoTokenizer
from tokenizers import AddedToken
# Config
input_size = 320#512
embed_dim = 128
# Tokenizer
tokenizer = AutoTokenizer.from_pretrained('google/t5-v1_1-base')
tokenizer.add_tokens(AddedToken("\n", normalized=False))
tokenizer.add_tokens(AddedToken("<s>", normalized=False))
vocab_size = len(tokenizer.get_vocab().keys())
print("vocab_size:", vocab_size)
print("pad token id:", tokenizer.pad_token)
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_lg"], check=True)
nlp = spacy.load("en_core_web_lg")
nlp.max_length = 2000000
selected = {'NUM', 'PROPN'}
alltoks = sorted(list(tokenizer.get_vocab().items()), key=lambda x:x[1])
all_toks_text = "\n".join([t[0].replace("▁", "") for t in alltoks])
doc = nlp(all_toks_text)
carry_toks = set()
i = 0
for ii, token in enumerate(doc):
if str(token) in alltoks[i][0]: pass
else: i += 1
if str(token) in alltoks[i][0] and token.pos_ in selected and i > 100:
if (token.pos_ != "PROPN" or alltoks[i][0].replace("▁", "")[0].isupper()):
carry_toks.add(alltoks[i][1])
print(len(carry_toks))
# Masked Accuracy Metric
def masked_accuracy(y_true, y_pred, padding_token=tokenizer.pad_token_id):
y_true = tf.cast(y_true, tf.int32)
y_pred = tf.cast(tf.argmax(y_pred, axis=-1), tf.int32)
mask = tf.cast(tf.not_equal(y_true, padding_token), tf.float32)
matches = tf.cast(tf.equal(y_true, y_pred), tf.float32)
accuracy = tf.reduce_sum(matches * mask) / tf.reduce_sum(mask)
return accuracy
# Embedding Layer
class SharedEmbedding(tf.keras.layers.Layer):
def __init__(self, vocab_size, embed_dim, **kwargs):
super(SharedEmbedding, self).__init__(**kwargs)
self.vocab_size = vocab_size
self.embed_dim = embed_dim
def build(self, input_shape):
self.shared_weights = self.add_weight(
shape=(self.vocab_size, self.embed_dim),
initializer='random_normal',
trainable=True,
name='shared_weights'
)
super(SharedEmbedding, self).build(input_shape)
def call(self, inputs, mode='embedding', temp=0.1):
if mode == 'embedding':
return tf.nn.embedding_lookup(self.shared_weights, inputs)
elif mode == 'classify':
return tf.nn.softmax(tf.matmul(inputs, self.shared_weights, transpose_b=True), axis=-1)
# Attention Layer
class DiffAttention(keras.layers.Layer):
def __init__(self, depth, **kwargs):
super(DiffAttention, self).__init__(**kwargs)
self.lambda_init = 0.8 - 0.6 * math.exp(-0.3 * depth)
def build(self, input_shape):
self.embed_dim = input_shape[-1]
self.input_size = input_shape[-2]
self.mask = tf.where(tf.linalg.band_part(tf.ones((input_shape[-2], input_shape[-2])), -1, 0) == 1.0, 0.0, float("-inf"))
self.range_do = -tf.range(input_shape[-2])-1
self.range_undo = tf.range(input_shape[-2])+1
self.Q = self.add_weight(name='kernelQ',
shape=(input_shape[-1], input_shape[-1]),
initializer='uniform',
trainable=True)
self.K = self.add_weight(name='kernelK',
shape=(input_shape[-1], input_shape[-1]),
initializer='uniform',
trainable=True)
self.V = self.add_weight(name='kernelV',
shape=(input_shape[-1], input_shape[-1]),
initializer='uniform',
trainable=True)
initializer = tf.keras.initializers.RandomNormal(mean=0.0, stddev=0.1)
self.lambda_q1 = self.add_weight(
shape=(input_shape[-1],), initializer=initializer, trainable=True, name="lambda_q1"
)
self.lambda_k1 = self.add_weight(
shape=(input_shape[-1],), initializer=initializer, trainable=True, name="lambda_k1"
)
self.lambda_q2 = self.add_weight(
shape=(input_shape[-1],), initializer=initializer, trainable=True, name="lambda_q2"
)
self.lambda_k2 = self.add_weight(
shape=(input_shape[-1],), initializer=initializer, trainable=True, name="lambda_k2"
)
super(DiffAttention, self).build(input_shape)
def roll_embeddings(self, tensor, shift_values):
batch_size, time_size, embed_dim = tensor.shape
if batch_size is None: return tensor
shift_matrix = tf.reshape(shift_values, (1, -1, 1))
shift_matrix = tf.tile(shift_matrix, [batch_size, 1, embed_dim])
indices = tf.range(embed_dim)
indices_matrix = tf.tile(indices, [batch_size * time_size])
indices_matrix = tf.reshape(indices_matrix, (batch_size, time_size, embed_dim))
new_indices = (indices_matrix + shift_matrix) % embed_dim
rolled_tensor = tf.gather(tensor, new_indices, batch_dims=2)
return rolled_tensor
def call(self, x, pos, pos_src):
v = x @ self.V
q = tf.transpose(tf.reshape(x @ self.Q, (-1, self.input_size, 2, self.embed_dim//2)), perm=[0, 2, 1, 3])
k = tf.transpose(tf.reshape(x @ self.K, (-1, self.input_size, 2, self.embed_dim//2)), perm=[0, 2, 1, 3])
atti = tf.matmul(q, k, transpose_b=True)
attp = tf.matmul(q, pos, transpose_b=True)
attp = self.roll_embeddings(tf.reshape(attp, (-1, self.input_size, self.input_size)), self.range_do)
attp = tf.reshape(attp, (-1, 2, self.input_size, self.input_size))
att = atti + attp
att = tf.nn.softmax((att / math.sqrt(self.embed_dim)) + self.mask, axis=-1)
att1 = att[:, 0]
att2 = att[:, 1]
# Differential attention
lambda_1 = tf.math.exp(tf.reduce_sum(self.lambda_q1 * self.lambda_k1, axis=-1))
lambda_2 = tf.math.exp(tf.reduce_sum(self.lambda_q2 * self.lambda_k2, axis=-1))
lambda_full = lambda_1 - lambda_2 + self.lambda_init
att = att1 - lambda_full * att2
out = att @ v
out = out * (1 - self.lambda_init)
return out
# Import Model
model = keras.models.load_model(
"rpc.keras",
custom_objects={
"DiffAttention" : DiffAttention,
"SharedEmbedding" : SharedEmbedding,
"masked_accuracy" : masked_accuracy
}
)
encoder = keras.Model(inputs=model.layers[0].input, outputs=model.layers[-1].output)
encoder.summary()
# Vectorize Function
def vectorize_texts(all_texts):
batch_size = 128
vects = []
for i in range(0, len(all_texts), batch_size):
texts = all_texts[i:i+batch_size]
toks = [text + ([tokenizer.pad_token_id] * (input_size - len(text))) for text in texts]
if len(toks) > 0:
toks = tf.constant(toks, shape=(len(toks), input_size))
vect = encoder.predict(toks, verbose=0)
for v, t in zip(vect, texts):
vects.append(v[:len(t), :])
return tf.concat(vects, axis=0).numpy()
# Import Database and All Toks
index = None
all_toks = None
index_type = None
def load_index(index_path="/dev/shm/rpc-vecdb/index", idx_type="ngt"):
global index
global all_toks
global index_type
index_type = idx_type
if idx_type == "ngt":
import ngtpy
index = ngtpy.Index(index_path, read_only=True)
elif idx_type == "faiss":
import faiss
index = faiss.read_index(index_path + "/index.faiss")
else:
raise ValueError("Unknown index type")
with open(index_path + "/all_toks.json", "r") as f:
all_toks = json.loads(f.read())
# Generate Function
def generate(text, use_rpc=True, max_tokens=128):
enc_text = tokenizer.encode(text, add_special_tokens=False)
text = tokenizer.decode(enc_text)
tok = None
i = 0
while i < max_tokens and tok != vocab_size - 2:
enc_text = enc_text[-input_size:]
if use_rpc:
xq = vectorize_texts([enc_text])[-1]
if index_type == "ngt":
_id = index.search(xq, size=1, epsilon=1)[0][0]
else:
_id = index.search(xq.reshape((1, -1)), 1)[1][0][0]
if all_toks[_id] in carry_toks:
tmp = tf.argmax(tf.matmul(xq.reshape((1, -1)), encoder.layers[1].shared_weights, transpose_b=True), axis=-1).numpy()[0]
if tmp in enc_text:
tok = tmp
else: tok = all_toks[_id]
else:
tok = all_toks[_id]
else:
ins = enc_text + [tokenizer.pad_token_id] * (input_size - len(enc_text))
ins = tf.constant(ins, shape=(1, input_size))
res = model.predict(ins, verbose=0)[0][len(enc_text)-1]
tok = tf.argmax(res, axis=-1).numpy().tolist()
enc_text += [tok]
new_text = tokenizer.decode(enc_text)
res = new_text[len(text):]
text = new_text
yield res |