PeechTTSv22050 / models /vocoder /hifigan /ms_discriminator.py
nickovchinnikov's picture
Init
9d61c9b
from typing import List, Tuple
import torch
from torch import Tensor, nn
from torch.nn import AvgPool1d, Conv1d, Module
import torch.nn.functional as F
from torch.nn.utils import spectral_norm, weight_norm
from models.config import HifiGanPretrainingConfig
# Leaky ReLU slope
LRELU_SLOPE = HifiGanPretrainingConfig.lReLU_slope
class DiscriminatorS(Module):
def __init__(self, use_spectral_norm: bool = False):
r"""Initialize the DiscriminatorS module.
Args:
use_spectral_norm (bool, optional): Whether to use spectral normalization. Defaults to False.
"""
super().__init__()
norm_f = weight_norm if not use_spectral_norm else spectral_norm
self.convs = nn.ModuleList(
[
norm_f(Conv1d(1, 128, 15, 1, padding=7)),
norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)),
norm_f(Conv1d(128, 256, 41, 2, groups=16, padding=20)),
norm_f(Conv1d(256, 512, 41, 4, groups=16, padding=20)),
norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)),
norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)),
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
],
)
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
def forward(self, x: Tensor) -> Tuple[Tensor, List[Tensor]]:
r"""Forward pass of the DiscriminatorS module.
Args:
x (Tensor): The input tensor.
Returns:
Tuple[Tensor, List[Tensor]]: The output tensor and a list of feature maps.
"""
fmap = []
for layer in self.convs:
x = layer(x)
x = F.leaky_relu(x, LRELU_SLOPE)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class MultiScaleDiscriminator(Module):
def __init__(self):
r"""Initialize the MultiScaleDiscriminator module."""
super().__init__()
self.discriminators = nn.ModuleList(
[
DiscriminatorS(use_spectral_norm=True),
DiscriminatorS(),
DiscriminatorS(),
],
)
self.meanpools = nn.ModuleList(
[
AvgPool1d(4, 2, padding=2),
AvgPool1d(4, 2, padding=2),
],
)
def forward(
self,
y: Tensor,
y_hat: Tensor,
) -> Tuple[
List[Tensor],
List[Tensor],
List[Tensor],
List[Tensor],
]:
r"""Forward pass of the MultiScaleDiscriminator module.
Args:
y (Tensor): The real audio tensor.
y_hat (Tensor): The generated audio tensor.
Returns:
Tuple[List[Tensor], List[Tensor], List[Tensor], List[Tensor]]:
A tuple containing lists of discriminator outputs and feature maps for real and generated audio.
"""
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for i, discriminator in enumerate(self.discriminators):
if i != 0:
y = self.meanpools[i - 1](y)
y_hat = self.meanpools[i - 1](y_hat)
y_d_r, fmap_r = discriminator(y)
y_d_g, fmap_g = discriminator(y_hat)
y_d_rs.append(y_d_r)
fmap_rs.append(fmap_r)
y_d_gs.append(y_d_g)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs