PeechTTSv22050 / models /vocoder /univnet /tests /test_kernel_predictor.py
nickovchinnikov's picture
Init
9d61c9b
import unittest
import torch
from models.vocoder.univnet.kernel_predictor import KernelPredictor
class TestKernelPredictor(unittest.TestCase):
def setUp(self):
self.batch_size = 2
self.cond_channels = 4
self.conv_in_channels = 3
self.conv_out_channels = 5
self.conv_layers = 2
self.conv_kernel_size = 3
self.kpnet_hidden_channels = 64
self.kpnet_conv_size = 3
self.kpnet_dropout = 0.0
self.lReLU_slope = 0.1
self.model = KernelPredictor(
self.cond_channels,
self.conv_in_channels,
self.conv_out_channels,
self.conv_layers,
self.conv_kernel_size,
self.kpnet_hidden_channels,
self.kpnet_conv_size,
self.kpnet_dropout,
self.lReLU_slope,
)
def test_forward(self):
c = torch.randn(self.batch_size, self.cond_channels, 10)
kernels, bias = self.model(c)
self.assertIsInstance(kernels, torch.Tensor)
self.assertEqual(
kernels.shape,
(
self.batch_size,
self.conv_layers,
self.conv_in_channels,
self.conv_out_channels,
self.conv_kernel_size,
10,
),
)
self.assertIsInstance(bias, torch.Tensor)
self.assertEqual(
bias.shape, (self.batch_size, self.conv_layers, self.conv_out_channels, 10),
)
def test_remove_weight_norm(self):
self.model.remove_weight_norm()
for module in self.model.modules():
if hasattr(module, "weight_g"):
self.assertIsNone(module.weight_g)
self.assertIsNone(module.weight_v)