PeechTTSv22050 / training /loss /tests /test_spectral_convergence_loss.py
nickovchinnikov's picture
Init
9d61c9b
import unittest
import torch
from training.loss import SpectralConvergengeLoss
class TestSpectralConvergengeLoss(unittest.TestCase):
def test_spectral_convergence_loss(self):
# Test the spectral convergence loss function with random input tensors
loss_fn = SpectralConvergengeLoss()
x_mag = torch.randn(4, 100, 513)
y_mag = torch.randn(4, 100, 513) * 0.1
loss = loss_fn(x_mag, y_mag)
self.assertIsInstance(loss, torch.Tensor)
self.assertEqual(loss.shape, torch.Size([]))
self.assertGreater(loss, 0.0)
def test_spectral_convergence_small_vectors(self):
# Test the spectral convergence loss function with non-zero loss
loss_fn = SpectralConvergengeLoss()
x_mag = torch.tensor([[1, 4, 9, 64], [1, 1, 1, 2]], dtype=torch.float32)
y_mag = torch.tensor([[1, 8, 16, 256], [1, 1, 2, 2]], dtype=torch.float32)
loss = loss_fn(x_mag, y_mag)
self.assertIsInstance(loss, torch.Tensor)
self.assertEqual(loss.shape, torch.Size([]))
expected = torch.tensor(0.7488)
self.assertTrue(torch.allclose(loss, expected, rtol=1e-4, atol=1e-4))
if __name__ == "__main__":
unittest.main()