Spaces:
Sleeping
Sleeping
File size: 24,902 Bytes
60b1427 ba5200e 65d5daa 60b1427 b7bd5a2 1229bf2 0a57b0f 0f40536 0a57b0f 0f40536 0a57b0f 0f40536 0a57b0f 0f40536 0a57b0f 0f40536 60b1427 b7bd5a2 957d2c2 b7bd5a2 b5db7e8 0f40536 2ad2c86 957d2c2 cfd2959 1229bf2 c620786 1bd8049 cfd2959 1bd8049 957d2c2 0f40536 dde1577 1bd8049 1229bf2 c620786 957d2c2 c620786 2ad2c86 c620786 1bd8049 957d2c2 1bd8049 b7bd5a2 1bd8049 c620786 60b1427 b7bd5a2 60b1427 e1116a3 60b1427 e1116a3 60b1427 0a57b0f 054584c e1116a3 0f40536 0a57b0f 0f40536 0a57b0f 0f40536 054584c 0a57b0f 0f40536 0a57b0f 0f40536 0a57b0f 0f40536 005d6b8 0f40536 005d6b8 0f40536 005d6b8 0f40536 005d6b8 0f40536 005d6b8 0f40536 005d6b8 0f40536 005d6b8 0f40536 005d6b8 0f40536 e1116a3 054584c 0a57b0f e1116a3 054584c 7ab41f7 054584c e1116a3 054584c e1116a3 0a57b0f 60b1427 4742b6b e1116a3 4742b6b e1116a3 4742b6b e1116a3 4742b6b e1116a3 4742b6b e1116a3 4742b6b e1116a3 4742b6b e1116a3 4742b6b d0820e9 60b1427 e1116a3 60b1427 e1116a3 60b1427 e1116a3 b7bd5a2 e1116a3 60b1427 6cd4890 e1116a3 b7bd5a2 e1116a3 b7bd5a2 0a57b0f b7bd5a2 e1116a3 b7bd5a2 0a57b0f b7bd5a2 e1116a3 b7bd5a2 e1116a3 b5db7e8 e1116a3 b5db7e8 770037f b5db7e8 e1116a3 b5db7e8 e1116a3 b5db7e8 4742b6b e1116a3 4742b6b b7bd5a2 234816f 552d5b4 234816f 552d5b4 234816f e1116a3 4742b6b e1116a3 8f96b1c b7bd5a2 8f96b1c b7bd5a2 8f96b1c b7bd5a2 e1116a3 4742b6b 8f96b1c 234816f 8f96b1c 234816f b25dfc8 234816f e1116a3 b7bd5a2 1229bf2 b7bd5a2 e1116a3 b7bd5a2 e1116a3 b7bd5a2 e1116a3 b7bd5a2 e1116a3 b7bd5a2 e1116a3 b7bd5a2 e1116a3 b7bd5a2 e1116a3 b7bd5a2 e1116a3 b7bd5a2 e1116a3 60b1427 b7bd5a2 60b1427 b7bd5a2 1229bf2 b7bd5a2 60b1427 e1116a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 |
import streamlit as st
import pandas as pd
import torch
import re
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from peft import PeftModel
from text_processing import TextProcessor
import gc
from pathlib import Path
# Configure page
st.set_page_config(
page_title="Biomedical Papers Analysis",
page_icon="π¬",
layout="wide"
)
# Initialize session state
if 'processed_data' not in st.session_state:
st.session_state.processed_data = None
if 'summaries' not in st.session_state:
st.session_state.summaries = None
if 'text_processor' not in st.session_state:
st.session_state.text_processor = None
if 'processing_started' not in st.session_state:
st.session_state.processing_started = False
if 'focused_summary_generated' not in st.session_state:
st.session_state.focused_summary_generated = False
def preprocess_text(text):
"""Preprocess text for summarization"""
if not isinstance(text, str) or not text.strip():
return text
# Clean up whitespace
text = re.sub(r'\s+', ' ', text)
text = text.strip()
# Fix common formatting issues
text = re.sub(r'(\d+)\s*%', r'\1%', text) # Fix percentage format
text = re.sub(r'\(\s*([Nn])\s*=\s*(\d+)\s*\)', r'(n=\2)', text) # Fix sample size format
text = re.sub(r'([Pp])\s*([<>])\s*(\d)', r'\1\2\3', text) # Fix p-value format
return text
def verify_facts(summary, original_text):
"""Verify key facts between summary and original text"""
# Extract numbers and percentages
def extract_numbers(text):
return set(re.findall(r'(\d+\.?\d*)%?', text))
# Extract relationships
def extract_relationships(text):
patterns = [
r'associated with', r'predicted', r'correlated',
r'increased', r'decreased', r'significant'
]
found = []
for pattern in patterns:
if re.search(pattern, text.lower()):
found.append(pattern)
return set(found)
# Get facts from both texts
original_numbers = extract_numbers(original_text)
summary_numbers = extract_numbers(summary)
original_relations = extract_relationships(original_text)
summary_relations = extract_relationships(summary)
return {
'is_valid': summary_numbers.issubset(original_numbers) and
summary_relations.issubset(original_relations),
'missing_numbers': original_numbers - summary_numbers,
'missing_relations': original_relations - summary_relations
}
def load_model(model_type):
"""Load appropriate model based on type with proper memory management"""
try:
gc.collect()
torch.cuda.empty_cache()
device = "cpu"
if model_type == "summarize":
model = AutoModelForSeq2SeqLM.from_pretrained(
"pendar02/bart-large-pubmedd",
cache_dir="./models",
torch_dtype=torch.float32
).to(device)
tokenizer = AutoTokenizer.from_pretrained(
"pendar02/bart-large-pubmedd",
cache_dir="./models"
)
else:
base_model = AutoModelForSeq2SeqLM.from_pretrained(
"GanjinZero/biobart-base",
cache_dir="./models",
torch_dtype=torch.float32
).to(device)
model = PeftModel.from_pretrained(
base_model,
"pendar02/biobart-finetune",
is_trainable=False
).to(device)
tokenizer = AutoTokenizer.from_pretrained(
"GanjinZero/biobart-base",
cache_dir="./models"
)
model.eval()
return model, tokenizer
except Exception as e:
st.error(f"Error loading model: {str(e)}")
raise
def cleanup_model(model, tokenizer):
try:
del model
del tokenizer
torch.cuda.empty_cache()
gc.collect()
except Exception:
pass
def process_excel(uploaded_file):
try:
df = pd.read_excel(uploaded_file)
required_columns = ['Abstract', 'Article Title', 'Authors',
'Source Title', 'Publication Year', 'DOI', 'Times Cited, All Databases']
missing_columns = [col for col in required_columns if col not in df.columns]
if missing_columns:
st.error(f"Missing required columns: {', '.join(missing_columns)}")
return None
return df[required_columns]
except Exception as e:
st.error(f"Error processing file: {str(e)}")
return None
def improve_summary_generation(text, model, tokenizer):
"""Generate improved summary with better prompt and validation"""
if not isinstance(text, str) or not text.strip():
return "No abstract available to summarize."
try:
# Simplified prompt
formatted_text = (
"Summarize this biomedical abstract into four sections:\n"
"1. Background/Objectives: State the main purpose and population\n"
"2. Methods: Describe what was done\n"
"3. Key findings: Include ALL numerical results and statistical relationships\n"
"4. Conclusions: State main implications\n\n"
"Important: Preserve all numbers, measurements, and statistical findings.\n\n"
"Text: " + preprocess_text(text)
)
inputs = tokenizer(formatted_text, return_tensors="pt", max_length=1024, truncation=True)
inputs = {k: v.to(model.device) for k, v in inputs.items()}
# Single generation attempt with optimized parameters
with torch.no_grad():
summary_ids = model.generate(
**{
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
"max_length": 300,
"min_length": 100,
"num_beams": 5,
"length_penalty": 2.0,
"no_repeat_ngram_size": 3,
"temperature": 0.3,
"repetition_penalty": 2.5
}
)
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
if not summary:
return "Error: Could not generate summary."
return post_process_summary(summary)
except Exception as e:
print(f"Error in summary generation: {str(e)}")
return "Error generating summary."
def post_process_summary(summary):
"""Enhanced post-processing focused on maintaining structure and removing artifacts"""
if not summary:
return summary
# Clean up section headers
header_mappings = {
r'(?i)background.*objectives?:?': 'Background and objectives:',
r'(?i)(materials?\s*and\s*)?methods?:?': 'Methods:',
r'(?i)(key\s*)?findings?:?|results?:?': 'Key findings:',
r'(?i)conclusions?:?': 'Conclusions:',
r'(?i)(study\s*)?aims?:?|goals?:?|purpose:?': '',
r'(?i)objectives?:?': '',
r'(?i)outcomes?:?': '',
r'(?i)discussion:?': ''
}
for pattern, replacement in header_mappings.items():
summary = re.sub(pattern, replacement, summary)
# Split into sections and clean
sections = re.split(r'(?i)(Background and objectives:|Methods:|Key findings:|Conclusions:)', summary)
sections = [s.strip() for s in sections if s.strip()]
# Reorganize sections
organized_sections = {
'Background and objectives': '',
'Methods': '',
'Key findings': '',
'Conclusions': ''
}
current_section = None
for item in sections:
if item in organized_sections:
current_section = item
elif current_section:
# Clean up content
content = re.sub(r'\s+', ' ', item) # Fix spacing
content = re.sub(r'\.+', '.', content) # Fix multiple periods
content = content.strip('.: ') # Remove trailing periods and spaces
organized_sections[current_section] = content
# Build final summary
final_sections = []
for section, content in organized_sections.items():
if content:
final_sections.append(f"{section} {content}.")
return '\n\n'.join(final_sections)
def validate_summary(summary, original_text):
"""Validate summary content against original text"""
# Perform fact verification
verification = verify_facts(summary, original_text)
if not verification.get('is_valid', False):
return False
# Check for age inconsistencies
age_mentions = re.findall(r'(\d+\.?\d*)\s*years?', summary.lower())
if len(age_mentions) > 1: # Multiple age mentions
return False
# Check for repetitive sentences
sentences = summary.split('.')
unique_sentences = set(s.strip().lower() for s in sentences if s.strip())
if len(sentences) - len(unique_sentences) > 1: # More than one duplicate
return False
# Check summary isn't too long or too short compared to original
summary_words = len(summary.split())
original_words = len(original_text.split())
if summary_words < 20 or summary_words > original_words * 0.8:
return False
return True
def generate_focused_summary(question, abstracts, model, tokenizer):
"""Generate focused summary based on question"""
try:
# Preprocess each abstract
formatted_abstracts = [preprocess_text(abstract) for abstract in abstracts]
combined_input = f"Question: {question}\nSummarize these abstracts to answer the question:\n" + \
"\n---\n".join(formatted_abstracts)
inputs = tokenizer(combined_input, return_tensors="pt", max_length=1024, truncation=True)
inputs = {k: v.to(model.device) for k, v in inputs.items()}
with torch.no_grad():
summary_ids = model.generate(
**{
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
"max_length": 300,
"min_length": 100,
"num_beams": 5,
"length_penalty": 2.0,
"temperature": 0.3,
"repetition_penalty": 2.5
}
)
return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
except Exception as e:
print(f"Error in focused summary generation: {str(e)}")
return "Error generating focused summary."
def create_filter_controls(df, sort_column):
"""Create appropriate filter controls based on the selected column"""
filtered_df = df.copy()
if sort_column == 'Publication Year':
year_min = int(df['Publication Year'].min())
year_max = int(df['Publication Year'].max())
col1, col2 = st.columns(2)
with col1:
start_year = st.number_input('From Year',
min_value=year_min,
max_value=year_max,
value=year_min)
with col2:
end_year = st.number_input('To Year',
min_value=year_min,
max_value=year_max,
value=year_max)
filtered_df = filtered_df[
(filtered_df['Publication Year'] >= start_year) &
(filtered_df['Publication Year'] <= end_year)
]
elif sort_column == 'Authors':
unique_authors = sorted(set(
author.strip()
for authors in df['Authors'].dropna()
for author in authors.split(';')
))
selected_authors = st.multiselect(
'Select Authors',
unique_authors
)
if selected_authors:
filtered_df = filtered_df[
filtered_df['Authors'].apply(
lambda x: any(author in str(x) for author in selected_authors)
)
]
elif sort_column == 'Source Title':
unique_sources = sorted(df['Source Title'].unique())
selected_sources = st.multiselect(
'Select Sources',
unique_sources
)
if selected_sources:
filtered_df = filtered_df[filtered_df['Source Title'].isin(selected_sources)]
elif sort_column == 'Times Cited':
cited_min = int(df['Times Cited'].min())
cited_max = int(df['Times Cited'].max())
col1, col2 = st.columns(2)
with col1:
start_cited = st.number_input('From Cited Count',
min_value=cited_min,
max_value=cited_max,
value=cited_min)
with col2:
end_cited = st.number_input('To Cited Count',
min_value=cited_min,
max_value=cited_max,
value=cited_max)
filtered_df = filtered_df[
(filtered_df['Times Cited'] >= start_cited) &
(filtered_df['Times Cited'] <= end_cited)
]
return filtered_df
def main():
st.title("π¬ Biomedical Papers Analysis")
uploaded_file = st.file_uploader(
"Upload Excel file containing papers",
type=['xlsx', 'xls'],
help="File must contain: Abstract, Article Title, Authors, Source Title, Publication Year, DOI"
)
question_container = st.empty()
question = ""
if uploaded_file is not None:
if st.session_state.processed_data is None:
with st.spinner("Processing file..."):
df = process_excel(uploaded_file)
if df is not None:
st.session_state.processed_data = df.dropna(subset=["Abstract"])
if st.session_state.processed_data is not None:
df = st.session_state.processed_data
st.write(f"π Loaded {len(df)} papers with abstracts")
with question_container:
question = st.text_input(
"Enter your research question (optional):",
help="If provided, a focused summary will be generated after individual summaries"
)
# Single button for both processes
if not st.session_state.get('processing_started', False):
if st.button("Start Analysis"):
st.session_state.processing_started = True
# Show processing status and results
if st.session_state.get('processing_started', False):
# Individual Summaries Section
st.header("π Individual Paper Summaries")
# Generate summaries if not already done
if st.session_state.summaries is None:
try:
with st.spinner("Generating individual paper summaries..."):
model, tokenizer = load_model("summarize")
summaries = []
progress_bar = st.progress(0)
for idx, abstract in enumerate(df['Abstract']):
summary = improve_summary_generation(abstract, model, tokenizer)
summaries.append(summary)
progress_bar.progress((idx + 1) / len(df))
st.session_state.summaries = summaries
cleanup_model(model, tokenizer)
progress_bar.empty()
except Exception as e:
st.error(f"Error generating summaries: {str(e)}")
st.session_state.processing_started = False
# Display summaries with improved sorting and filtering
if st.session_state.summaries is not None:
col1, col2 = st.columns(2)
with col1:
sort_options = ['Article Title', 'Authors', 'Publication Year', 'Source Title', 'Times Cited']
sort_column = st.selectbox("Sort/Filter by:", sort_options)
with col2:
# Only show A-Z/Z-A option for Article Title
if sort_column == 'Article Title':
ascending = st.radio(
"Sort order",
["A to Z", "Z to A"],
horizontal=True
) == "A to Z"
elif sort_column == 'Times Cited':
ascending = st.radio(
"Sort order",
["Most cited", "Least cited"],
horizontal=True
) == "Least cited"
else:
ascending = True # Default for other columns
# Create display dataframe
display_df = df.copy()
display_df['Summary'] = st.session_state.summaries
display_df['Publication Year'] = display_df['Publication Year'].astype(int)
display_df.rename(columns={'Times Cited, All Databases': 'Times Cited'}, inplace=True)
display_df['Times Cited'] = display_df['Times Cited'].fillna(0).astype(int)
# Apply filters
filtered_df = create_filter_controls(display_df, sort_column)
if sort_column == 'Article Title':
# Sort alphabetically
sorted_df = filtered_df.sort_values(by=sort_column, ascending=ascending)
else:
# Keep original order for other columns after filtering
# Keep original order for other columns after filtering
sorted_df = filtered_df
# Show number of filtered results
if len(sorted_df) != len(display_df):
st.write(f"Showing {len(sorted_df)} of {len(display_df)} papers")
# Apply custom styling
st.markdown("""
<style>
.paper-info {
border: 1px solid #ddd;
padding: 15px;
margin-bottom: 20px;
border-radius: 5px;
}
.paper-section {
margin-bottom: 10px;
}
.section-header {
font-weight: bold;
color: #555;
margin-bottom: 8px;
}
.paper-title {
margin-top: 5px;
margin-bottom: 10px;
}
.paper-meta {
font-size: 0.9em;
color: #666;
}
.doi-link {
color: #0366d6;
}
</style>
""", unsafe_allow_html=True)
# Display papers using the filtered and sorted dataframe
for _, row in sorted_df.iterrows():
paper_info_cols = st.columns([1, 1])
with paper_info_cols[0]: # PAPER column
st.markdown('<div class="paper-section"><div class="section-header">PAPER</div>', unsafe_allow_html=True)
st.markdown(f"""
<div class="paper-info">
<div class="paper-title">{row['Article Title']}</div>
<div class="paper-meta">
<strong>Authors:</strong> {row['Authors']}<br>
<strong>Source:</strong> {row['Source Title']}<br>
<strong>Publication Year:</strong> {row['Publication Year']}<br>
<strong>Times Cited:</strong> {row['Times Cited']}<br>
<strong>DOI:</strong> {row['DOI'] if pd.notna(row['DOI']) else 'None'}
</div>
</div>
""", unsafe_allow_html=True)
with paper_info_cols[1]: # SUMMARY column
st.markdown('<div class="paper-section"><div class="section-header">SUMMARY</div>', unsafe_allow_html=True)
st.markdown(f"""
<div class="paper-info">
{row['Summary']}
</div>
""", unsafe_allow_html=True)
# Add spacing between papers
st.markdown("<div style='margin-bottom: 20px;'></div>", unsafe_allow_html=True)
# Question-focused Summary Section (only if question provided)
if question.strip():
st.header("β Question-focused Summary")
if not st.session_state.get('focused_summary_generated', False):
try:
with st.spinner("Analyzing relevant papers..."):
# Initialize text processor if needed
if st.session_state.text_processor is None:
st.session_state.text_processor = TextProcessor()
# Find relevant abstracts
results = st.session_state.text_processor.find_most_relevant_abstracts(
question,
df['Abstract'].tolist(),
top_k=5
)
# Load question-focused model
model, tokenizer = load_model("question_focused")
# Generate focused summary
relevant_abstracts = df['Abstract'].iloc[results['top_indices']].tolist()
focused_summary = generate_focused_summary(
question,
relevant_abstracts,
model,
tokenizer
)
# Store results
st.session_state.focused_summary = focused_summary
st.session_state.relevant_papers = df.iloc[results['top_indices']]
st.session_state.relevance_scores = results['scores']
st.session_state.focused_summary_generated = True
# Cleanup second model
cleanup_model(model, tokenizer)
except Exception as e:
st.error(f"Error generating focused summary: {str(e)}")
# Display focused summary results
if st.session_state.get('focused_summary_generated', False):
st.subheader("Summary")
st.write(st.session_state.focused_summary)
st.subheader("Most Relevant Papers")
relevant_papers = st.session_state.relevant_papers[
['Article Title', 'Authors', 'Publication Year', 'DOI']
].copy()
relevant_papers['Relevance Score'] = st.session_state.relevance_scores
relevant_papers['Publication Year'] = relevant_papers['Publication Year'].astype(int)
st.dataframe(relevant_papers, hide_index=True)
if __name__ == "__main__":
main() |