File size: 24,902 Bytes
60b1427
 
 
ba5200e
65d5daa
60b1427
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7bd5a2
 
 
 
1229bf2
0a57b0f
 
 
 
0f40536
0a57b0f
 
 
0f40536
0a57b0f
 
 
 
0f40536
0a57b0f
0f40536
0a57b0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f40536
 
60b1427
b7bd5a2
957d2c2
b7bd5a2
b5db7e8
0f40536
2ad2c86
957d2c2
cfd2959
 
1229bf2
c620786
 
 
1bd8049
cfd2959
1bd8049
957d2c2
0f40536
dde1577
1bd8049
1229bf2
c620786
 
 
957d2c2
 
 
c620786
2ad2c86
c620786
1bd8049
 
 
957d2c2
1bd8049
b7bd5a2
1bd8049
 
c620786
 
60b1427
b7bd5a2
 
 
 
 
 
 
 
 
60b1427
 
 
 
e1116a3
 
60b1427
 
 
 
e1116a3
60b1427
 
 
 
 
0a57b0f
054584c
e1116a3
 
 
0f40536
0a57b0f
0f40536
0a57b0f
 
 
 
 
 
 
0f40536
 
 
 
054584c
0a57b0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f40536
0a57b0f
 
 
0f40536
0a57b0f
0f40536
 
 
 
005d6b8
 
 
 
 
0f40536
005d6b8
0f40536
 
 
 
 
 
 
 
 
 
005d6b8
0f40536
 
005d6b8
0f40536
005d6b8
 
 
0f40536
005d6b8
 
 
 
 
 
 
 
 
 
 
 
0f40536
 
 
 
 
005d6b8
 
 
 
 
0f40536
005d6b8
 
0f40536
e1116a3
054584c
 
 
 
0a57b0f
e1116a3
054584c
 
 
 
 
 
 
7ab41f7
054584c
 
e1116a3
054584c
 
 
 
 
 
 
e1116a3
 
 
 
0a57b0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60b1427
4742b6b
 
 
e1116a3
4742b6b
 
 
 
 
 
e1116a3
 
 
4742b6b
 
e1116a3
 
 
4742b6b
 
 
 
e1116a3
4742b6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1116a3
4742b6b
e1116a3
4742b6b
 
 
 
 
 
e1116a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4742b6b
d0820e9
60b1427
 
e1116a3
60b1427
 
 
e1116a3
60b1427
e1116a3
b7bd5a2
 
e1116a3
60b1427
 
 
 
 
6cd4890
e1116a3
b7bd5a2
 
 
e1116a3
b7bd5a2
 
 
0a57b0f
b7bd5a2
e1116a3
b7bd5a2
0a57b0f
b7bd5a2
 
e1116a3
b7bd5a2
 
 
e1116a3
 
b5db7e8
 
 
 
 
 
 
e1116a3
b5db7e8
770037f
b5db7e8
 
e1116a3
b5db7e8
 
 
e1116a3
b5db7e8
 
4742b6b
e1116a3
4742b6b
b7bd5a2
234816f
 
 
 
 
 
552d5b4
234816f
 
 
 
 
 
 
 
 
 
 
552d5b4
234816f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1116a3
4742b6b
 
 
e1116a3
8f96b1c
b7bd5a2
 
8f96b1c
 
 
 
 
 
 
 
 
 
 
 
 
b7bd5a2
8f96b1c
 
 
 
 
 
 
 
 
 
b7bd5a2
 
 
e1116a3
4742b6b
8f96b1c
234816f
 
 
 
 
 
 
 
 
 
 
 
 
8f96b1c
234816f
 
b25dfc8
234816f
 
 
 
 
 
 
 
 
 
e1116a3
b7bd5a2
1229bf2
b7bd5a2
e1116a3
b7bd5a2
 
 
 
 
 
e1116a3
b7bd5a2
 
 
 
 
 
e1116a3
b7bd5a2
 
e1116a3
b7bd5a2
 
 
 
 
 
 
 
e1116a3
b7bd5a2
 
 
 
 
e1116a3
b7bd5a2
 
e1116a3
b7bd5a2
 
e1116a3
b7bd5a2
 
 
 
e1116a3
60b1427
b7bd5a2
60b1427
b7bd5a2
 
1229bf2
b7bd5a2
60b1427
 
e1116a3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
import streamlit as st
import pandas as pd
import torch
import re 
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from peft import PeftModel
from text_processing import TextProcessor
import gc
from pathlib import Path

# Configure page
st.set_page_config(
    page_title="Biomedical Papers Analysis",
    page_icon="πŸ”¬",
    layout="wide"
)

# Initialize session state
if 'processed_data' not in st.session_state:
    st.session_state.processed_data = None
if 'summaries' not in st.session_state:
    st.session_state.summaries = None
if 'text_processor' not in st.session_state:
    st.session_state.text_processor = None
if 'processing_started' not in st.session_state:
    st.session_state.processing_started = False
if 'focused_summary_generated' not in st.session_state:
    st.session_state.focused_summary_generated = False

def preprocess_text(text):
    """Preprocess text for summarization"""
    if not isinstance(text, str) or not text.strip():
        return text
    
    # Clean up whitespace
    text = re.sub(r'\s+', ' ', text)
    text = text.strip()
    
    # Fix common formatting issues
    text = re.sub(r'(\d+)\s*%', r'\1%', text)  # Fix percentage format
    text = re.sub(r'\(\s*([Nn])\s*=\s*(\d+)\s*\)', r'(n=\2)', text)  # Fix sample size format
    text = re.sub(r'([Pp])\s*([<>])\s*(\d)', r'\1\2\3', text)  # Fix p-value format
    
    return text

def verify_facts(summary, original_text):
    """Verify key facts between summary and original text"""
    # Extract numbers and percentages
    def extract_numbers(text):
        return set(re.findall(r'(\d+\.?\d*)%?', text))
    
    # Extract relationships
    def extract_relationships(text):
        patterns = [
            r'associated with', r'predicted', r'correlated',
            r'increased', r'decreased', r'significant'
        ]
        found = []
        for pattern in patterns:
            if re.search(pattern, text.lower()):
                found.append(pattern)
        return set(found)
    
    # Get facts from both texts
    original_numbers = extract_numbers(original_text)
    summary_numbers = extract_numbers(summary)
    original_relations = extract_relationships(original_text)
    summary_relations = extract_relationships(summary)
    
    return {
        'is_valid': summary_numbers.issubset(original_numbers) and 
                   summary_relations.issubset(original_relations),
        'missing_numbers': original_numbers - summary_numbers,
        'missing_relations': original_relations - summary_relations
    }

def load_model(model_type):
    """Load appropriate model based on type with proper memory management"""
    try:
        gc.collect()
        torch.cuda.empty_cache()
        device = "cpu"
        
        if model_type == "summarize":
            model = AutoModelForSeq2SeqLM.from_pretrained(
                "pendar02/bart-large-pubmedd",
                cache_dir="./models",
                torch_dtype=torch.float32
            ).to(device)
            
            tokenizer = AutoTokenizer.from_pretrained(
                "pendar02/bart-large-pubmedd",
                cache_dir="./models"
            )
        else:
            base_model = AutoModelForSeq2SeqLM.from_pretrained(
                "GanjinZero/biobart-base",
                cache_dir="./models",
                torch_dtype=torch.float32
            ).to(device)
            
            model = PeftModel.from_pretrained(
                base_model, 
                "pendar02/biobart-finetune",
                is_trainable=False
            ).to(device)
            
            tokenizer = AutoTokenizer.from_pretrained(
                "GanjinZero/biobart-base",
                cache_dir="./models"
            )
        
        model.eval()
        return model, tokenizer
    except Exception as e:
        st.error(f"Error loading model: {str(e)}")
        raise

def cleanup_model(model, tokenizer):
    try:
        del model
        del tokenizer
        torch.cuda.empty_cache()
        gc.collect()
    except Exception:
        pass

def process_excel(uploaded_file):
    try:
        df = pd.read_excel(uploaded_file)
        required_columns = ['Abstract', 'Article Title', 'Authors', 
                          'Source Title', 'Publication Year', 'DOI', 'Times Cited, All Databases']
        
        missing_columns = [col for col in required_columns if col not in df.columns]
        if missing_columns:
            st.error(f"Missing required columns: {', '.join(missing_columns)}")
            return None
        
        return df[required_columns]
    except Exception as e:
        st.error(f"Error processing file: {str(e)}")
        return None

def improve_summary_generation(text, model, tokenizer):
    """Generate improved summary with better prompt and validation"""
    if not isinstance(text, str) or not text.strip():
        return "No abstract available to summarize."
    
    try:
        # Simplified prompt
        formatted_text = (
            "Summarize this biomedical abstract into four sections:\n"
            "1. Background/Objectives: State the main purpose and population\n"
            "2. Methods: Describe what was done\n"
            "3. Key findings: Include ALL numerical results and statistical relationships\n"
            "4. Conclusions: State main implications\n\n"
            "Important: Preserve all numbers, measurements, and statistical findings.\n\n"
            "Text: " + preprocess_text(text)
        )
        
        inputs = tokenizer(formatted_text, return_tensors="pt", max_length=1024, truncation=True)
        inputs = {k: v.to(model.device) for k, v in inputs.items()}
        
        # Single generation attempt with optimized parameters
        with torch.no_grad():
            summary_ids = model.generate(
                **{
                    "input_ids": inputs["input_ids"],
                    "attention_mask": inputs["attention_mask"],
                    "max_length": 300,
                    "min_length": 100,
                    "num_beams": 5,
                    "length_penalty": 2.0,
                    "no_repeat_ngram_size": 3,
                    "temperature": 0.3,
                    "repetition_penalty": 2.5
                }
            )
        
        summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
        if not summary:
            return "Error: Could not generate summary."
            
        return post_process_summary(summary)
        
    except Exception as e:
        print(f"Error in summary generation: {str(e)}")
        return "Error generating summary."

def post_process_summary(summary):
    """Enhanced post-processing focused on maintaining structure and removing artifacts"""
    if not summary:
        return summary
    
    # Clean up section headers
    header_mappings = {
        r'(?i)background.*objectives?:?': 'Background and objectives:',
        r'(?i)(materials?\s*and\s*)?methods?:?': 'Methods:',
        r'(?i)(key\s*)?findings?:?|results?:?': 'Key findings:',
        r'(?i)conclusions?:?': 'Conclusions:',
        r'(?i)(study\s*)?aims?:?|goals?:?|purpose:?': '',
        r'(?i)objectives?:?': '',
        r'(?i)outcomes?:?': '',
        r'(?i)discussion:?': ''
    }
    
    for pattern, replacement in header_mappings.items():
        summary = re.sub(pattern, replacement, summary)
    
    # Split into sections and clean
    sections = re.split(r'(?i)(Background and objectives:|Methods:|Key findings:|Conclusions:)', summary)
    sections = [s.strip() for s in sections if s.strip()]
    
    # Reorganize sections
    organized_sections = {
        'Background and objectives': '',
        'Methods': '',
        'Key findings': '',
        'Conclusions': ''
    }
    
    current_section = None
    for item in sections:
        if item in organized_sections:
            current_section = item
        elif current_section:
            # Clean up content
            content = re.sub(r'\s+', ' ', item)  # Fix spacing
            content = re.sub(r'\.+', '.', content)  # Fix multiple periods
            content = content.strip('.: ')  # Remove trailing periods and spaces
            organized_sections[current_section] = content
    
    # Build final summary
    final_sections = []
    for section, content in organized_sections.items():
        if content:
            final_sections.append(f"{section} {content}.")
    
    return '\n\n'.join(final_sections)

def validate_summary(summary, original_text):
    """Validate summary content against original text"""
    # Perform fact verification
    verification = verify_facts(summary, original_text)
    
    if not verification.get('is_valid', False):
        return False
    
    # Check for age inconsistencies
    age_mentions = re.findall(r'(\d+\.?\d*)\s*years?', summary.lower())
    if len(age_mentions) > 1:  # Multiple age mentions
        return False
    
    # Check for repetitive sentences
    sentences = summary.split('.')
    unique_sentences = set(s.strip().lower() for s in sentences if s.strip())
    if len(sentences) - len(unique_sentences) > 1:  # More than one duplicate
        return False
    
    # Check summary isn't too long or too short compared to original
    summary_words = len(summary.split())
    original_words = len(original_text.split())
    if summary_words < 20 or summary_words > original_words * 0.8:
        return False
    
    return True

def generate_focused_summary(question, abstracts, model, tokenizer):
    """Generate focused summary based on question"""
    try:
        # Preprocess each abstract
        formatted_abstracts = [preprocess_text(abstract) for abstract in abstracts]
        combined_input = f"Question: {question}\nSummarize these abstracts to answer the question:\n" + \
                        "\n---\n".join(formatted_abstracts)
        
        inputs = tokenizer(combined_input, return_tensors="pt", max_length=1024, truncation=True)
        inputs = {k: v.to(model.device) for k, v in inputs.items()}
        
        with torch.no_grad():
            summary_ids = model.generate(
                **{
                    "input_ids": inputs["input_ids"],
                    "attention_mask": inputs["attention_mask"],
                    "max_length": 300,
                    "min_length": 100,
                    "num_beams": 5,
                    "length_penalty": 2.0,
                    "temperature": 0.3,
                    "repetition_penalty": 2.5
                }
            )
        
        return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
        
    except Exception as e:
        print(f"Error in focused summary generation: {str(e)}")
        return "Error generating focused summary."

def create_filter_controls(df, sort_column):
    """Create appropriate filter controls based on the selected column"""
    filtered_df = df.copy()
    
    if sort_column == 'Publication Year':
        year_min = int(df['Publication Year'].min())
        year_max = int(df['Publication Year'].max())
        col1, col2 = st.columns(2)
        with col1:
            start_year = st.number_input('From Year', 
                min_value=year_min, 
                max_value=year_max,
                value=year_min)
        with col2:
            end_year = st.number_input('To Year', 
                min_value=year_min, 
                max_value=year_max,
                value=year_max)
        filtered_df = filtered_df[
            (filtered_df['Publication Year'] >= start_year) & 
            (filtered_df['Publication Year'] <= end_year)
        ]
        
    elif sort_column == 'Authors':
        unique_authors = sorted(set(
            author.strip()
            for authors in df['Authors'].dropna()
            for author in authors.split(';')
        ))
        selected_authors = st.multiselect(
            'Select Authors',
            unique_authors
        )
        if selected_authors:
            filtered_df = filtered_df[
                filtered_df['Authors'].apply(
                    lambda x: any(author in str(x) for author in selected_authors)
                )
            ]
            
    elif sort_column == 'Source Title':
        unique_sources = sorted(df['Source Title'].unique())
        selected_sources = st.multiselect(
            'Select Sources',
            unique_sources
        )
        if selected_sources:
            filtered_df = filtered_df[filtered_df['Source Title'].isin(selected_sources)]
            
    elif sort_column == 'Times Cited':
        cited_min = int(df['Times Cited'].min())
        cited_max = int(df['Times Cited'].max())
        col1, col2 = st.columns(2)
        with col1:
            start_cited = st.number_input('From Cited Count', 
                min_value=cited_min, 
                max_value=cited_max,
                value=cited_min)
        with col2:
            end_cited = st.number_input('To Cited Count', 
                min_value=cited_min, 
                max_value=cited_max,
                value=cited_max)
        filtered_df = filtered_df[
            (filtered_df['Times Cited'] >= start_cited) & 
            (filtered_df['Times Cited'] <= end_cited)
        ]
    
    return filtered_df

def main():
    st.title("πŸ”¬ Biomedical Papers Analysis")
    
    uploaded_file = st.file_uploader(
        "Upload Excel file containing papers", 
        type=['xlsx', 'xls'],
        help="File must contain: Abstract, Article Title, Authors, Source Title, Publication Year, DOI"
    )
    
    question_container = st.empty()
    question = ""
    
    if uploaded_file is not None:
        if st.session_state.processed_data is None:
            with st.spinner("Processing file..."):
                df = process_excel(uploaded_file)
                if df is not None:
                    st.session_state.processed_data = df.dropna(subset=["Abstract"])
        
        if st.session_state.processed_data is not None:
            df = st.session_state.processed_data
            st.write(f"πŸ“Š Loaded {len(df)} papers with abstracts")
            
            with question_container:
                question = st.text_input(
                    "Enter your research question (optional):",
                    help="If provided, a focused summary will be generated after individual summaries"
                )
            
            # Single button for both processes
                if not st.session_state.get('processing_started', False):
                if st.button("Start Analysis"):
                    st.session_state.processing_started = True
            
            # Show processing status and results
            if st.session_state.get('processing_started', False):
                # Individual Summaries Section
                st.header("πŸ“ Individual Paper Summaries")
                
                # Generate summaries if not already done
                if st.session_state.summaries is None:
                    try:
                        with st.spinner("Generating individual paper summaries..."):
                            model, tokenizer = load_model("summarize")
                            summaries = []
                            progress_bar = st.progress(0)
                            
                            for idx, abstract in enumerate(df['Abstract']):
                                summary = improve_summary_generation(abstract, model, tokenizer)
                                summaries.append(summary)
                                progress_bar.progress((idx + 1) / len(df))
                            
                            st.session_state.summaries = summaries
                            cleanup_model(model, tokenizer)
                            progress_bar.empty()
                            
                    except Exception as e:
                        st.error(f"Error generating summaries: {str(e)}")
                        st.session_state.processing_started = False
                
                # Display summaries with improved sorting and filtering
                if st.session_state.summaries is not None:
                    col1, col2 = st.columns(2)
                    with col1:
                        sort_options = ['Article Title', 'Authors', 'Publication Year', 'Source Title', 'Times Cited']
                        sort_column = st.selectbox("Sort/Filter by:", sort_options)
                    with col2:
                        # Only show A-Z/Z-A option for Article Title
                        if sort_column == 'Article Title':
                            ascending = st.radio(
                                "Sort order",
                                ["A to Z", "Z to A"],
                                horizontal=True
                            ) == "A to Z"
                        elif sort_column == 'Times Cited':
                            ascending = st.radio(
                                "Sort order",
                                ["Most cited", "Least cited"],
                                horizontal=True
                            ) == "Least cited"
                        else:
                            ascending = True  # Default for other columns
                    
                    # Create display dataframe
                    display_df = df.copy()
                    display_df['Summary'] = st.session_state.summaries
                    display_df['Publication Year'] = display_df['Publication Year'].astype(int)
                    display_df.rename(columns={'Times Cited, All Databases': 'Times Cited'}, inplace=True)
                    display_df['Times Cited'] = display_df['Times Cited'].fillna(0).astype(int)
                
                    # Apply filters
                    filtered_df = create_filter_controls(display_df, sort_column)
                    
                    if sort_column == 'Article Title':
                        # Sort alphabetically
                        sorted_df = filtered_df.sort_values(by=sort_column, ascending=ascending)
                    else:
                        # Keep original order for other columns after filtering		
                        # Keep original order for other columns after filtering
                            sorted_df = filtered_df
                    
                    # Show number of filtered results
                    if len(sorted_df) != len(display_df):
                        st.write(f"Showing {len(sorted_df)} of {len(display_df)} papers")
                    
                    # Apply custom styling
                    st.markdown("""
                    <style>
                    .paper-info {
                        border: 1px solid #ddd;
                        padding: 15px;
                        margin-bottom: 20px;
                        border-radius: 5px;
                    }
                    .paper-section {
                        margin-bottom: 10px;
                    }
                    .section-header {
                        font-weight: bold;
                        color: #555;
                        margin-bottom: 8px;
                    }
                    .paper-title {
                        margin-top: 5px;
                        margin-bottom: 10px;
                    }
                    .paper-meta {
                        font-size: 0.9em;
                        color: #666;
                    }
                    .doi-link {
                        color: #0366d6;
                    }
                    </style>
                    """, unsafe_allow_html=True)
                    
                    # Display papers using the filtered and sorted dataframe
                    for _, row in sorted_df.iterrows():
                        paper_info_cols = st.columns([1, 1])
                        
                        with paper_info_cols[0]:  # PAPER column
                            st.markdown('<div class="paper-section"><div class="section-header">PAPER</div>', unsafe_allow_html=True)
                            st.markdown(f"""
                            <div class="paper-info">
                                <div class="paper-title">{row['Article Title']}</div>
                                <div class="paper-meta">
                                    <strong>Authors:</strong> {row['Authors']}<br>
                                    <strong>Source:</strong> {row['Source Title']}<br>
                                    <strong>Publication Year:</strong> {row['Publication Year']}<br>
                                    <strong>Times Cited:</strong> {row['Times Cited']}<br>
                                    <strong>DOI:</strong> {row['DOI'] if pd.notna(row['DOI']) else 'None'}
                                </div>
                            </div>
                            """, unsafe_allow_html=True)

                        with paper_info_cols[1]:  # SUMMARY column
                            st.markdown('<div class="paper-section"><div class="section-header">SUMMARY</div>', unsafe_allow_html=True)
                            st.markdown(f"""
                            <div class="paper-info">
                                {row['Summary']}
                            </div>
                            """, unsafe_allow_html=True)
                        
                        # Add spacing between papers
                        st.markdown("<div style='margin-bottom: 20px;'></div>", unsafe_allow_html=True)
                
                # Question-focused Summary Section (only if question provided)
                if question.strip():
                    st.header("❓ Question-focused Summary")
                    
                    if not st.session_state.get('focused_summary_generated', False):
                        try:
                            with st.spinner("Analyzing relevant papers..."):
                                # Initialize text processor if needed
                                if st.session_state.text_processor is None:
                                    st.session_state.text_processor = TextProcessor()
                                
                                # Find relevant abstracts
                                results = st.session_state.text_processor.find_most_relevant_abstracts(
                                    question,
                                    df['Abstract'].tolist(),
                                    top_k=5
                                )
                                
                                # Load question-focused model
                                model, tokenizer = load_model("question_focused")
                                
                                # Generate focused summary
                                relevant_abstracts = df['Abstract'].iloc[results['top_indices']].tolist()
                                focused_summary = generate_focused_summary(
                                    question,
                                    relevant_abstracts,
                                    model,
                                    tokenizer
                                )
                                
                                # Store results
                                st.session_state.focused_summary = focused_summary
                                st.session_state.relevant_papers = df.iloc[results['top_indices']]
                                st.session_state.relevance_scores = results['scores']
                                st.session_state.focused_summary_generated = True
                                
                                # Cleanup second model
                                cleanup_model(model, tokenizer)
                        
                        except Exception as e:
                            st.error(f"Error generating focused summary: {str(e)}")
                    
                    # Display focused summary results
                    if st.session_state.get('focused_summary_generated', False):
                        st.subheader("Summary")
                        st.write(st.session_state.focused_summary)
                        
                        st.subheader("Most Relevant Papers")
                        relevant_papers = st.session_state.relevant_papers[
                            ['Article Title', 'Authors', 'Publication Year', 'DOI']
                        ].copy()
                        relevant_papers['Relevance Score'] = st.session_state.relevance_scores
                        relevant_papers['Publication Year'] = relevant_papers['Publication Year'].astype(int)
                        st.dataframe(relevant_papers, hide_index=True)

if __name__ == "__main__":
    main()