biomedical / app.py
pendar02's picture
Update app.py
65d5daa verified
raw
history blame
14.6 kB
import streamlit as st
import pandas as pd
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from peft import PeftModel
from text_processing import TextProcessor
import gc
from pathlib import Path
# Configure page
st.set_page_config(
page_title="Biomedical Papers Analysis",
page_icon="πŸ”¬",
layout="wide"
)
# Initialize session state
if 'processed_data' not in st.session_state:
st.session_state.processed_data = None
if 'summaries' not in st.session_state:
st.session_state.summaries = None
if 'text_processor' not in st.session_state:
st.session_state.text_processor = None
if 'processing_started' not in st.session_state:
st.session_state.processing_started = False
if 'focused_summary_generated' not in st.session_state:
st.session_state.focused_summary_generated = False
def load_model(model_type):
"""Load appropriate model based on type with proper memory management"""
try:
# Clear any existing cached data
torch.cuda.empty_cache()
gc.collect()
if model_type == "summarize":
base_model = AutoModelForSeq2SeqLM.from_pretrained(
"facebook/bart-large-cnn",
cache_dir="./models",
low_cpu_mem_usage=True,
torch_dtype=torch.float32
)
model = PeftModel.from_pretrained(
base_model,
"pendar02/results",
device_map="auto",
torch_dtype=torch.float32
)
tokenizer = AutoTokenizer.from_pretrained(
"facebook/bart-large-cnn",
cache_dir="./models"
)
else: # question_focused
base_model = AutoModelForSeq2SeqLM.from_pretrained(
"GanjinZero/biobart-base",
cache_dir="./models",
low_cpu_mem_usage=True,
torch_dtype=torch.float32
)
model = PeftModel.from_pretrained(
base_model,
"pendar02/biobart-finetune",
device_map="auto",
torch_dtype=torch.float32
)
tokenizer = AutoTokenizer.from_pretrained(
"GanjinZero/biobart-base",
cache_dir="./models"
)
model.eval()
return model, tokenizer
except Exception as e:
st.error(f"Error loading model: {str(e)}")
raise
def cleanup_model(model, tokenizer):
"""Properly cleanup model resources"""
try:
del model
del tokenizer
torch.cuda.empty_cache()
gc.collect()
except Exception:
pass
@st.cache_data
def process_excel(uploaded_file):
"""Process uploaded Excel file"""
try:
df = pd.read_excel(uploaded_file)
required_columns = ['Abstract', 'Article Title', 'Authors',
'Source Title', 'Publication Year', 'DOI']
# Check required columns
missing_columns = [col for col in required_columns if col not in df.columns]
if missing_columns:
st.error(f"Missing required columns: {', '.join(missing_columns)}")
return None
return df[required_columns]
except Exception as e:
st.error(f"Error processing file: {str(e)}")
return None
def preprocess_text(text):
"""Preprocess text to add appropriate formatting before summarization"""
if not isinstance(text, str) or not text.strip():
return text
# Split text into sentences (basic implementation)
sentences = [s.strip() for s in text.replace('. ', '.\n').split('\n')]
# Remove empty sentences
sentences = [s for s in sentences if s]
# Join with proper line breaks
formatted_text = '\n'.join(sentences)
return formatted_text
def generate_summary(text, model, tokenizer):
"""Generate summary for single abstract"""
if not isinstance(text, str) or not text.strip():
return "No abstract available to summarize."
# Check if abstract is too short
word_count = len(text.split())
if word_count < 50: # Threshold for "short" abstracts
return text # Return original text for very short abstracts
# Preprocess the text first
formatted_text = preprocess_text(text)
# Adjust generation parameters based on input length
max_length = min(150, word_count + 50) # Dynamic max length
min_length = min(50, word_count) # Dynamic min length
inputs = tokenizer(formatted_text, return_tensors="pt", max_length=1024, truncation=True)
with torch.no_grad():
summary_ids = model.generate(
**{
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
"max_length": max_length,
"min_length": min_length,
"num_beams": 4,
"length_penalty": 2.0,
"early_stopping": True,
"no_repeat_ngram_size": 3 # Prevent repetition of phrases
}
)
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
# Post-process summary
if summary.lower() == text.lower() or len(summary.split()) / word_count > 0.9:
return text # Return original if summary is too similar
return summary
def generate_focused_summary(question, abstracts, model, tokenizer):
"""Generate focused summary based on question"""
# Preprocess each abstract
formatted_abstracts = [preprocess_text(abstract) for abstract in abstracts]
combined_input = f"Question: {question} Abstracts: " + " [SEP] ".join(formatted_abstracts)
inputs = tokenizer(combined_input, return_tensors="pt", max_length=1024, truncation=True)
with torch.no_grad():
summary_ids = model.generate(
**{
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
"max_length": 200,
"min_length": 50,
"num_beams": 4,
"length_penalty": 2.0,
"early_stopping": True
}
)
return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
def main():
st.title("πŸ”¬ Biomedical Papers Analysis")
# File upload section
uploaded_file = st.file_uploader(
"Upload Excel file containing papers",
type=['xlsx', 'xls'],
help="File must contain: Abstract, Article Title, Authors, Source Title, Publication Year, DOI"
)
# Question input - moved up but hidden initially
question_container = st.empty()
question = ""
if uploaded_file is not None:
# Process Excel file
if st.session_state.processed_data is None:
with st.spinner("Processing file..."):
df = process_excel(uploaded_file)
if df is not None:
st.session_state.processed_data = df.dropna(subset=["Abstract"])
if st.session_state.processed_data is not None:
df = st.session_state.processed_data
st.write(f"πŸ“Š Loaded {len(df)} papers with abstracts")
# Get question before processing
with question_container:
question = st.text_input(
"Enter your research question (optional):",
help="If provided, a question-focused summary will be generated after individual summaries"
)
# Single button for both processes
if not st.session_state.get('processing_started', False):
if st.button("Start Analysis"):
st.session_state.processing_started = True
# Show processing status and results
if st.session_state.get('processing_started', False):
# Individual Summaries Section
st.header("πŸ“ Individual Paper Summaries")
if st.session_state.summaries is None:
try:
with st.spinner("Generating summaries..."):
# Load summarization model
model, tokenizer = load_model("summarize")
# Process abstracts with real-time updates
summaries = []
progress_bar = st.progress(0)
summary_display = st.empty()
for i, (_, row) in enumerate(df.iterrows()):
summary = generate_summary(row['Abstract'], model, tokenizer)
summaries.append(summary)
# Update progress and show current summary
progress = (i + 1) / len(df)
progress_bar.progress(progress)
summary_display.write(f"Processing paper {i+1}/{len(df)}:\n{row['Article Title']}")
st.session_state.summaries = summaries
# Cleanup first model
cleanup_model(model, tokenizer)
except Exception as e:
st.error(f"Error generating summaries: {str(e)}")
# Display summaries with improved sorting
if st.session_state.summaries is not None:
col1, col2 = st.columns(2)
with col1:
sort_options = ['Article Title', 'Authors', 'Publication Year', 'Source Title']
sort_column = st.selectbox("Sort by:", sort_options)
with col2:
ascending = st.checkbox("Ascending order", True)
# Create display dataframe with formatted year
display_df = df.copy()
display_df['Summary'] = st.session_state.summaries
display_df['Publication Year'] = display_df['Publication Year'].astype(int)
sorted_df = display_df.sort_values(by=sort_column, ascending=ascending)
# Apply custom formatting
st.markdown("""
<style>
.stDataFrame {
font-size: 16px;
}
.stDataFrame td {
white-space: normal !important;
padding: 8px !important;
}
</style>
""", unsafe_allow_html=True)
st.dataframe(
sorted_df[['Article Title', 'Authors', 'Source Title',
'Publication Year', 'DOI', 'Summary']],
hide_index=True
)
# Question-focused Summary Section (only if question provided)
if question.strip():
st.header("❓ Question-focused Summary")
if not st.session_state.get('focused_summary_generated', False):
try:
with st.spinner("Analyzing relevant papers..."):
# Initialize text processor if needed
if st.session_state.text_processor is None:
st.session_state.text_processor = TextProcessor()
# Find relevant abstracts
results = st.session_state.text_processor.find_most_relevant_abstracts(
question,
df['Abstract'].tolist(),
top_k=5
)
# Load question-focused model
model, tokenizer = load_model("question_focused")
# Generate focused summary
relevant_abstracts = df['Abstract'].iloc[results['top_indices']].tolist()
focused_summary = generate_focused_summary(
question,
relevant_abstracts,
model,
tokenizer
)
# Store results
st.session_state.focused_summary = focused_summary
st.session_state.relevant_papers = df.iloc[results['top_indices']]
st.session_state.relevance_scores = results['scores']
st.session_state.focused_summary_generated = True
# Cleanup second model
cleanup_model(model, tokenizer)
except Exception as e:
st.error(f"Error generating focused summary: {str(e)}")
# Display focused summary results
if st.session_state.get('focused_summary_generated', False):
st.subheader("Summary")
st.write(st.session_state.focused_summary)
st.subheader("Most Relevant Papers")
relevant_papers = st.session_state.relevant_papers[
['Article Title', 'Authors', 'Publication Year', 'DOI']
].copy()
relevant_papers['Relevance Score'] = st.session_state.relevance_scores
relevant_papers['Publication Year'] = relevant_papers['Publication Year'].astype(int)
st.dataframe(relevant_papers, hide_index=True)
if __name__ == "__main__":
main()