Spaces:
Sleeping
Sleeping
File size: 856 Bytes
889ddf2 1ef98d2 889ddf2 1ef98d2 8070ff5 1ef98d2 889ddf2 1ef98d2 889ddf2 8070ff5 889ddf2 8070ff5 889ddf2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
import gradio as gr
from tensorflow.keras.models import load_model
import numpy as np
import os
# Load the model (ensure it's in the same directory as app.py)
model_path = os.path.join(os.path.dirname(__file__), 'waste_classifier_mobilenetv2.h5')
model = load_model(model_path)
# Prediction function
def classify_image(image):
if image is None:
return "No image provided."
image = np.array(image)
if image.shape != (224, 224, 3):
image = np.resize(image, (224, 224, 3))
image = image / 255.0
image = np.expand_dims(image, axis=0)
prediction = model.predict(image)
class_label = 'Reyclabble' if prediction[0][0] > 0.5 else 'Organic'
return class_label
# Create Gradio interface
interface = gr.Interface(fn=classify_image, inputs=gr.Image(type="numpy"), outputs="text")
interface.launch(share=True)
|