Spaces:
Runtime error
Runtime error
File size: 2,127 Bytes
41460de 3e0a87b 402e9be ef80c58 de5cd4d eac4597 de5cd4d 402e9be d4a926a 402e9be 3e0a87b 82b7326 de5cd4d ef80c58 0bd3e3f 0110fa1 0bd3e3f 3e0a87b c5118ce 0110fa1 c5118ce 41460de c5118ce 41460de c5118ce 68739a8 41460de c5118ce 41460de 3e0a87b c5118ce c6338e6 de5cd4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
import streamlit as st
st.set_page_config(f'SDSN x GIZ Policy Tracing', layout="wide")
import seaborn as sns
import pdfplumber
from pandas import DataFrame
from keybert import KeyBERT
import matplotlib.pyplot as plt
import numpy as np
import streamlit as st
##@st.cache(allow_output_mutation=True)
def load_model():
return KeyBERT()
def read_(file):
if file is not None:
text = []
with pdfplumber.open(file) as pdf:
for page in pdf.pages:
text.append(page.extract_text())
text_str = ' '.join([page for page in text])
return text_str
st.sidebar.image(
"https://github.com/gizdatalab/policy_tracing/blob/main/img/sdsn.png?raw=true",
use_column_width=True
)
st.sidebar.container(
file = st.file_uploader('Upload PDF File', type=['pdf'])
)
st.sidebar.title(
"Options:"
)
st.sidebar.markdown(
"You can freely browse the different chapters - ie example prompts from different people - and see the results."
)
selected_date = st.sidebar.selectbox(
"Please select the chapter you want to read:",
['c1','c2']
)
with st.container():
st.markdown("<h1 style='text-align: center; color: black;'> SDSN X GIZ - Policy Action Tracking</h1>", unsafe_allow_html=True)
st.write(' ')
st.write(' ')
with st.expander("ℹ️ - About this app", expanded=True):
st.write(
"""
The *Policy Action Tracker* app is an easy-to-use interface built with Streamlit for analyzing policy documents - developed by GIZ Data and the Sustainable Development Solution Network.
It uses a minimal keyword extraction technique that leverages multiple NLP embeddings and relies on [Transformers] (https://huggingface.co/transformers/) 🤗 to create keywords/keyphrases that are most similar to a document.
"""
)
st.markdown("")
st.markdown("")
st.markdown("## 📌 Step One: Upload document ")
with st.container():
file = st.file_uploader('Upload PDF File', type=['pdf'])
text_str = read_(file)
st.write('Number of pages:',len(pdf.pages)) |