Spaces:
Sleeping
Sleeping
File size: 5,173 Bytes
2e2f07b efae294 66a61d0 2e2f07b 3472d22 2e2f07b 3472d22 2e2f07b afd2efd 66a61d0 2e2f07b 3472d22 2e2f07b 3472d22 2e2f07b 07d7c0a 2e2f07b 66a61d0 2e2f07b 66a61d0 2e2f07b efae294 3472d22 2e2f07b 3472d22 2e2f07b 07d7c0a 2e2f07b 07d7c0a 2e2f07b 66a61d0 2e2f07b 07d7c0a 2e2f07b 07d7c0a efae294 07d7c0a 66a61d0 3472d22 2e2f07b 07d7c0a efae294 66a61d0 2e2f07b 66a61d0 07d7c0a 2e2f07b 3472d22 07d7c0a 3472d22 ea3db16 07d7c0a efae294 3472d22 66a61d0 3472d22 ea3db16 07d7c0a 66a61d0 07d7c0a 66a61d0 ea3db16 07d7c0a 3472d22 ea3db16 2e2f07b efae294 3472d22 efae294 2e2f07b 07d7c0a 3472d22 07d7c0a efae294 ea3db16 efae294 07d7c0a 3472d22 07d7c0a 2e2f07b 10bcd3a 07d7c0a efae294 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import cv2
import gradio as gr
import os
from PIL import Image
import numpy as np
import torch
from torch.autograd import Variable
from torchvision import transforms
import torch.nn.functional as F
import matplotlib.pyplot as plt
import warnings
import time
warnings.filterwarnings("ignore")
# Clone the DIS repo and move contents (ensure this runs once per session)
os.system("git clone https://github.com/xuebinqin/DIS")
os.system("mv DIS/IS-Net/* .")
# project imports
from data_loader_cache import normalize, im_reader, im_preprocess
from models import *
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Download official weights if not already present
if not os.path.exists("saved_models"):
os.mkdir("saved_models")
os.system("mv isnet.pth saved_models/")
class GOSNormalize(object):
"""
Normalize the Image using torch.transforms.
"""
def __init__(self, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]):
self.mean = mean
self.std = std
def __call__(self, image):
return normalize(image, self.mean, self.std)
transform = transforms.Compose([GOSNormalize([0.5, 0.5, 0.5], [1.0, 1.0, 1.0])])
def load_image(im_path, hypar):
im = im_reader(im_path)
im, im_shp = im_preprocess(im, hypar["cache_size"])
im = torch.divide(im, 255.0)
shape = torch.from_numpy(np.array(im_shp))
return transform(im).unsqueeze(0), shape.unsqueeze(0)
def build_model(hypar, device):
net = hypar["model"]
if hypar["model_digit"] == "half":
net.half()
for layer in net.modules():
if isinstance(layer, torch.nn.BatchNorm2d):
layer.float()
net.to(device)
if hypar["restore_model"] != "":
net.load_state_dict(torch.load(os.path.join(hypar["model_path"], hypar["restore_model"]), map_location=device))
net.to(device)
net.eval()
return net
def predict(net, inputs_val, shapes_val, hypar, device):
net.eval()
if hypar["model_digit"] == "full":
inputs_val = inputs_val.type(torch.FloatTensor)
else:
inputs_val = inputs_val.type(torch.HalfTensor)
inputs_val_v = Variable(inputs_val, requires_grad=False).to(device)
ds_val = net(inputs_val_v)[0]
pred_val = ds_val[0][0, :, :, :]
pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val, 0),
(shapes_val[0][0], shapes_val[0][1]),
mode='bilinear'))
ma = torch.max(pred_val)
mi = torch.min(pred_val)
pred_val = (pred_val - mi) / (ma - mi + 1e-8)
if device == 'cuda':
torch.cuda.empty_cache()
return (pred_val.detach().cpu().numpy() * 255).astype(np.uint8)
# Parameters
hypar = {
"model_path": "./saved_models",
"restore_model": "isnet.pth",
"interm_sup": False,
"model_digit": "full",
"seed": 0,
"cache_size": [1024, 1024],
"input_size": [1024, 1024],
"crop_size": [1024, 1024],
"model": ISNetDIS()
}
net = build_model(hypar, device)
def inference(file_paths, logs):
"""
Process up to 3 images uploaded via the file uploader.
Only the image with background removed is returned.
"""
start_time = time.time()
logs = logs or ""
if not file_paths:
logs += "No images to process.\n"
return [], logs, logs
# Limit to a maximum of 3 images
image_paths = file_paths[:3]
processed_images = []
for path in image_paths:
image_tensor, orig_size = load_image(path, hypar)
mask = predict(net, image_tensor, orig_size, hypar, device)
pil_mask = Image.fromarray(mask).convert('L')
im_rgb = Image.open(path).convert("RGB")
im_rgba = im_rgb.copy()
im_rgba.putalpha(pil_mask)
processed_images.append(im_rgba)
elapsed = round(time.time() - start_time, 2)
logs += f"Processed {len(processed_images)} image(s) in {elapsed} second(s).\n"
return processed_images, logs, logs
title = "Highly Accurate Dichotomous Image Segmentation"
description = (
"This is an unofficial demo for DIS, a model that removes the background from images. "
"Upload up to 3 images at once using the file uploader below. "
"GitHub: https://github.com/xuebinqin/DIS<br>"
"Telegram bot: https://t.me/restoration_photo_bot<br>"
"[](https://twitter.com/DoEvent)"
)
article = (
"<div><center><img src='https://visitor-badge.glitch.me/badge?page_id=max_skobeev_dis_cmp_public' "
"alt='visitor badge'></center></div>"
)
interface = gr.Interface(
fn=inference,
inputs=[
gr.File(file_count="multiple", type="filepath", label="Upload Images (up to 3)"),
gr.State()
],
outputs=[
gr.Gallery(label="Output (Background Removed)"),
gr.State(),
gr.Textbox(label="Logs", lines=6)
],
examples=[
[["robot.png"], None],
[["robot.png", "ship.png"], None],
],
title=title,
description=description,
article=article,
flagging_mode="never",
cache_mode="lazy"
).queue().launch(show_api=True, show_error=True)
|