File size: 5,173 Bytes
2e2f07b
 
 
 
 
 
 
 
 
 
 
efae294
66a61d0
2e2f07b
3472d22
2e2f07b
 
 
 
 
 
 
 
 
3472d22
2e2f07b
 
afd2efd
66a61d0
2e2f07b
3472d22
 
 
 
2e2f07b
 
 
3472d22
 
2e2f07b
07d7c0a
2e2f07b
 
 
 
66a61d0
2e2f07b
66a61d0
2e2f07b
efae294
 
3472d22
2e2f07b
 
3472d22
2e2f07b
 
07d7c0a
 
2e2f07b
07d7c0a
2e2f07b
 
66a61d0
2e2f07b
07d7c0a
2e2f07b
 
 
07d7c0a
efae294
07d7c0a
66a61d0
3472d22
 
2e2f07b
 
07d7c0a
 
efae294
66a61d0
2e2f07b
66a61d0
07d7c0a
 
 
 
 
 
 
 
 
 
 
 
2e2f07b
 
3472d22
07d7c0a
3472d22
ea3db16
07d7c0a
efae294
3472d22
 
 
66a61d0
 
3472d22
 
ea3db16
07d7c0a
 
66a61d0
 
07d7c0a
66a61d0
 
ea3db16
07d7c0a
3472d22
ea3db16
 
2e2f07b
 
efae294
3472d22
 
efae294
 
 
 
 
 
 
 
2e2f07b
 
 
07d7c0a
3472d22
07d7c0a
 
efae294
ea3db16
efae294
 
 
07d7c0a
3472d22
 
07d7c0a
2e2f07b
 
 
10bcd3a
07d7c0a
efae294
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import cv2
import gradio as gr
import os
from PIL import Image
import numpy as np
import torch
from torch.autograd import Variable
from torchvision import transforms
import torch.nn.functional as F
import matplotlib.pyplot as plt
import warnings
import time
warnings.filterwarnings("ignore")

# Clone the DIS repo and move contents (ensure this runs once per session)
os.system("git clone https://github.com/xuebinqin/DIS")
os.system("mv DIS/IS-Net/* .")

# project imports
from data_loader_cache import normalize, im_reader, im_preprocess 
from models import *

device = 'cuda' if torch.cuda.is_available() else 'cpu'

# Download official weights if not already present
if not os.path.exists("saved_models"):
    os.mkdir("saved_models")
    os.system("mv isnet.pth saved_models/")

class GOSNormalize(object):
    """
    Normalize the Image using torch.transforms.
    """
    def __init__(self, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]):
        self.mean = mean
        self.std = std

    def __call__(self, image):
        return normalize(image, self.mean, self.std)

transform = transforms.Compose([GOSNormalize([0.5, 0.5, 0.5], [1.0, 1.0, 1.0])])

def load_image(im_path, hypar):
    im = im_reader(im_path)
    im, im_shp = im_preprocess(im, hypar["cache_size"])
    im = torch.divide(im, 255.0)
    shape = torch.from_numpy(np.array(im_shp))
    return transform(im).unsqueeze(0), shape.unsqueeze(0)

def build_model(hypar, device):
    net = hypar["model"]
    if hypar["model_digit"] == "half":
        net.half()
        for layer in net.modules():
            if isinstance(layer, torch.nn.BatchNorm2d):
                layer.float()
    net.to(device)
    if hypar["restore_model"] != "":
        net.load_state_dict(torch.load(os.path.join(hypar["model_path"], hypar["restore_model"]), map_location=device))
        net.to(device)
    net.eval()
    return net

def predict(net, inputs_val, shapes_val, hypar, device):
    net.eval()
    if hypar["model_digit"] == "full":
        inputs_val = inputs_val.type(torch.FloatTensor)
    else:
        inputs_val = inputs_val.type(torch.HalfTensor)
    inputs_val_v = Variable(inputs_val, requires_grad=False).to(device)
    ds_val = net(inputs_val_v)[0]
    pred_val = ds_val[0][0, :, :, :]
    pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val, 0),
                                          (shapes_val[0][0], shapes_val[0][1]),
                                          mode='bilinear'))
    ma = torch.max(pred_val)
    mi = torch.min(pred_val)
    pred_val = (pred_val - mi) / (ma - mi + 1e-8)
    if device == 'cuda':
        torch.cuda.empty_cache()
    return (pred_val.detach().cpu().numpy() * 255).astype(np.uint8)

# Parameters
hypar = {
    "model_path": "./saved_models",
    "restore_model": "isnet.pth",
    "interm_sup": False,
    "model_digit": "full",
    "seed": 0,
    "cache_size": [1024, 1024],
    "input_size": [1024, 1024],
    "crop_size": [1024, 1024],
    "model": ISNetDIS()
}

net = build_model(hypar, device)

def inference(file_paths, logs):
    """
    Process up to 3 images uploaded via the file uploader.
    Only the image with background removed is returned.
    """
    start_time = time.time()
    logs = logs or ""
    if not file_paths:
        logs += "No images to process.\n"
        return [], logs, logs

    # Limit to a maximum of 3 images
    image_paths = file_paths[:3]
    processed_images = []
    for path in image_paths:
        image_tensor, orig_size = load_image(path, hypar)
        mask = predict(net, image_tensor, orig_size, hypar, device)
        pil_mask = Image.fromarray(mask).convert('L')
        im_rgb = Image.open(path).convert("RGB")
        im_rgba = im_rgb.copy()
        im_rgba.putalpha(pil_mask)
        processed_images.append(im_rgba)

    elapsed = round(time.time() - start_time, 2)
    logs += f"Processed {len(processed_images)} image(s) in {elapsed} second(s).\n"
    return processed_images, logs, logs

title = "Highly Accurate Dichotomous Image Segmentation"
description = (
    "This is an unofficial demo for DIS, a model that removes the background from images. "
    "Upload up to 3 images at once using the file uploader below. "
    "GitHub: https://github.com/xuebinqin/DIS<br>"
    "Telegram bot: https://t.me/restoration_photo_bot<br>"
    "[![](https://img.shields.io/twitter/follow/DoEvent?label=@DoEvent&style=social)](https://twitter.com/DoEvent)"
)
article = (
    "<div><center><img src='https://visitor-badge.glitch.me/badge?page_id=max_skobeev_dis_cmp_public' "
    "alt='visitor badge'></center></div>"
)

interface = gr.Interface(
    fn=inference,
    inputs=[
        gr.File(file_count="multiple", type="filepath", label="Upload Images (up to 3)"),
        gr.State()
    ],
    outputs=[
        gr.Gallery(label="Output (Background Removed)"),
        gr.State(),
        gr.Textbox(label="Logs", lines=6)
    ],
    examples=[
        [["robot.png"], None],
        [["robot.png", "ship.png"], None],
    ],
    title=title,
    description=description,
    article=article,
    flagging_mode="never",
    cache_mode="lazy"
).queue().launch(show_api=True, show_error=True)