petergpt's picture
remove mask
ea3db16 verified
import cv2
import gradio as gr
import os
from PIL import Image
import numpy as np
import torch
from torch.autograd import Variable
from torchvision import transforms
import torch.nn.functional as F
import matplotlib.pyplot as plt
import warnings
import time
warnings.filterwarnings("ignore")
# Clone the DIS repo and move contents (ensure this runs once per session)
os.system("git clone https://github.com/xuebinqin/DIS")
os.system("mv DIS/IS-Net/* .")
# project imports
from data_loader_cache import normalize, im_reader, im_preprocess
from models import *
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Download official weights if not already present
if not os.path.exists("saved_models"):
os.mkdir("saved_models")
os.system("mv isnet.pth saved_models/")
class GOSNormalize(object):
"""
Normalize the Image using torch.transforms.
"""
def __init__(self, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]):
self.mean = mean
self.std = std
def __call__(self, image):
return normalize(image, self.mean, self.std)
transform = transforms.Compose([GOSNormalize([0.5, 0.5, 0.5], [1.0, 1.0, 1.0])])
def load_image(im_path, hypar):
im = im_reader(im_path)
im, im_shp = im_preprocess(im, hypar["cache_size"])
im = torch.divide(im, 255.0)
shape = torch.from_numpy(np.array(im_shp))
return transform(im).unsqueeze(0), shape.unsqueeze(0)
def build_model(hypar, device):
net = hypar["model"]
if hypar["model_digit"] == "half":
net.half()
for layer in net.modules():
if isinstance(layer, torch.nn.BatchNorm2d):
layer.float()
net.to(device)
if hypar["restore_model"] != "":
net.load_state_dict(torch.load(os.path.join(hypar["model_path"], hypar["restore_model"]), map_location=device))
net.to(device)
net.eval()
return net
def predict(net, inputs_val, shapes_val, hypar, device):
net.eval()
if hypar["model_digit"] == "full":
inputs_val = inputs_val.type(torch.FloatTensor)
else:
inputs_val = inputs_val.type(torch.HalfTensor)
inputs_val_v = Variable(inputs_val, requires_grad=False).to(device)
ds_val = net(inputs_val_v)[0]
pred_val = ds_val[0][0, :, :, :]
pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val, 0),
(shapes_val[0][0], shapes_val[0][1]),
mode='bilinear'))
ma = torch.max(pred_val)
mi = torch.min(pred_val)
pred_val = (pred_val - mi) / (ma - mi + 1e-8)
if device == 'cuda':
torch.cuda.empty_cache()
return (pred_val.detach().cpu().numpy() * 255).astype(np.uint8)
# Parameters
hypar = {
"model_path": "./saved_models",
"restore_model": "isnet.pth",
"interm_sup": False,
"model_digit": "full",
"seed": 0,
"cache_size": [1024, 1024],
"input_size": [1024, 1024],
"crop_size": [1024, 1024],
"model": ISNetDIS()
}
net = build_model(hypar, device)
def inference(file_paths, logs):
"""
Process up to 3 images uploaded via the file uploader.
Only the image with background removed is returned.
"""
start_time = time.time()
logs = logs or ""
if not file_paths:
logs += "No images to process.\n"
return [], logs, logs
# Limit to a maximum of 3 images
image_paths = file_paths[:3]
processed_images = []
for path in image_paths:
image_tensor, orig_size = load_image(path, hypar)
mask = predict(net, image_tensor, orig_size, hypar, device)
pil_mask = Image.fromarray(mask).convert('L')
im_rgb = Image.open(path).convert("RGB")
im_rgba = im_rgb.copy()
im_rgba.putalpha(pil_mask)
processed_images.append(im_rgba)
elapsed = round(time.time() - start_time, 2)
logs += f"Processed {len(processed_images)} image(s) in {elapsed} second(s).\n"
return processed_images, logs, logs
title = "Highly Accurate Dichotomous Image Segmentation"
description = (
"This is an unofficial demo for DIS, a model that removes the background from images. "
"Upload up to 3 images at once using the file uploader below. "
"GitHub: https://github.com/xuebinqin/DIS<br>"
"Telegram bot: https://t.me/restoration_photo_bot<br>"
"[![](https://img.shields.io/twitter/follow/DoEvent?label=@DoEvent&style=social)](https://twitter.com/DoEvent)"
)
article = (
"<div><center><img src='https://visitor-badge.glitch.me/badge?page_id=max_skobeev_dis_cmp_public' "
"alt='visitor badge'></center></div>"
)
interface = gr.Interface(
fn=inference,
inputs=[
gr.File(file_count="multiple", type="filepath", label="Upload Images (up to 3)"),
gr.State()
],
outputs=[
gr.Gallery(label="Output (Background Removed)"),
gr.State(),
gr.Textbox(label="Logs", lines=6)
],
examples=[
[["robot.png"], None],
[["robot.png", "ship.png"], None],
],
title=title,
description=description,
article=article,
flagging_mode="never",
cache_mode="lazy"
).queue().launch(show_api=True, show_error=True)