Spaces:
Sleeping
Sleeping
import cv2 | |
import gradio as gr | |
import os | |
from PIL import Image | |
import numpy as np | |
import torch | |
from torch.autograd import Variable | |
from torchvision import transforms | |
import torch.nn.functional as F | |
import matplotlib.pyplot as plt | |
import warnings | |
import time | |
warnings.filterwarnings("ignore") | |
# Clone the DIS repo and move contents (ensure this runs once per session) | |
os.system("git clone https://github.com/xuebinqin/DIS") | |
os.system("mv DIS/IS-Net/* .") | |
# project imports | |
from data_loader_cache import normalize, im_reader, im_preprocess | |
from models import * | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
# Download official weights if not already present | |
if not os.path.exists("saved_models"): | |
os.mkdir("saved_models") | |
os.system("mv isnet.pth saved_models/") | |
class GOSNormalize(object): | |
""" | |
Normalize the Image using torch.transforms. | |
""" | |
def __init__(self, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]): | |
self.mean = mean | |
self.std = std | |
def __call__(self, image): | |
return normalize(image, self.mean, self.std) | |
transform = transforms.Compose([GOSNormalize([0.5, 0.5, 0.5], [1.0, 1.0, 1.0])]) | |
def load_image(im_path, hypar): | |
im = im_reader(im_path) | |
im, im_shp = im_preprocess(im, hypar["cache_size"]) | |
im = torch.divide(im, 255.0) | |
shape = torch.from_numpy(np.array(im_shp)) | |
return transform(im).unsqueeze(0), shape.unsqueeze(0) | |
def build_model(hypar, device): | |
net = hypar["model"] | |
if hypar["model_digit"] == "half": | |
net.half() | |
for layer in net.modules(): | |
if isinstance(layer, torch.nn.BatchNorm2d): | |
layer.float() | |
net.to(device) | |
if hypar["restore_model"] != "": | |
net.load_state_dict(torch.load(os.path.join(hypar["model_path"], hypar["restore_model"]), map_location=device)) | |
net.to(device) | |
net.eval() | |
return net | |
def predict(net, inputs_val, shapes_val, hypar, device): | |
net.eval() | |
if hypar["model_digit"] == "full": | |
inputs_val = inputs_val.type(torch.FloatTensor) | |
else: | |
inputs_val = inputs_val.type(torch.HalfTensor) | |
inputs_val_v = Variable(inputs_val, requires_grad=False).to(device) | |
ds_val = net(inputs_val_v)[0] | |
pred_val = ds_val[0][0, :, :, :] | |
pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val, 0), | |
(shapes_val[0][0], shapes_val[0][1]), | |
mode='bilinear')) | |
ma = torch.max(pred_val) | |
mi = torch.min(pred_val) | |
pred_val = (pred_val - mi) / (ma - mi + 1e-8) | |
if device == 'cuda': | |
torch.cuda.empty_cache() | |
return (pred_val.detach().cpu().numpy() * 255).astype(np.uint8) | |
# Parameters | |
hypar = { | |
"model_path": "./saved_models", | |
"restore_model": "isnet.pth", | |
"interm_sup": False, | |
"model_digit": "full", | |
"seed": 0, | |
"cache_size": [1024, 1024], | |
"input_size": [1024, 1024], | |
"crop_size": [1024, 1024], | |
"model": ISNetDIS() | |
} | |
net = build_model(hypar, device) | |
def inference(file_paths, logs): | |
""" | |
Process up to 3 images uploaded via the file uploader. | |
Only the image with background removed is returned. | |
""" | |
start_time = time.time() | |
logs = logs or "" | |
if not file_paths: | |
logs += "No images to process.\n" | |
return [], logs, logs | |
# Limit to a maximum of 3 images | |
image_paths = file_paths[:3] | |
processed_images = [] | |
for path in image_paths: | |
image_tensor, orig_size = load_image(path, hypar) | |
mask = predict(net, image_tensor, orig_size, hypar, device) | |
pil_mask = Image.fromarray(mask).convert('L') | |
im_rgb = Image.open(path).convert("RGB") | |
im_rgba = im_rgb.copy() | |
im_rgba.putalpha(pil_mask) | |
processed_images.append(im_rgba) | |
elapsed = round(time.time() - start_time, 2) | |
logs += f"Processed {len(processed_images)} image(s) in {elapsed} second(s).\n" | |
return processed_images, logs, logs | |
title = "Highly Accurate Dichotomous Image Segmentation" | |
description = ( | |
"This is an unofficial demo for DIS, a model that removes the background from images. " | |
"Upload up to 3 images at once using the file uploader below. " | |
"GitHub: https://github.com/xuebinqin/DIS<br>" | |
"Telegram bot: https://t.me/restoration_photo_bot<br>" | |
"[](https://twitter.com/DoEvent)" | |
) | |
article = ( | |
"<div><center><img src='https://visitor-badge.glitch.me/badge?page_id=max_skobeev_dis_cmp_public' " | |
"alt='visitor badge'></center></div>" | |
) | |
interface = gr.Interface( | |
fn=inference, | |
inputs=[ | |
gr.File(file_count="multiple", type="filepath", label="Upload Images (up to 3)"), | |
gr.State() | |
], | |
outputs=[ | |
gr.Gallery(label="Output (Background Removed)"), | |
gr.State(), | |
gr.Textbox(label="Logs", lines=6) | |
], | |
examples=[ | |
[["robot.png"], None], | |
[["robot.png", "ship.png"], None], | |
], | |
title=title, | |
description=description, | |
article=article, | |
flagging_mode="never", | |
cache_mode="lazy" | |
).queue().launch(show_api=True, show_error=True) | |