transcribeapi / app.py
peterkros's picture
Create app.py
d222613 verified
raw
history blame
867 Bytes
from fastapi import FastAPI, File, UploadFile
import whisper
import numpy as np
import io
import wave
app = FastAPI()
# Load Whisper model
model = whisper.load_model("base") # Change to the model you want to use
@app.post("/transcribe/")
async def transcribe(file: UploadFile = File(...)):
audio_data = await file.read()
# Convert the uploaded file to numpy array
with wave.open(io.BytesIO(audio_data), "rb") as wav_reader:
samples = wav_reader.getnframes()
audio = wav_reader.readframes(samples)
audio_as_np_int16 = np.frombuffer(audio, dtype=np.int16)
audio_as_np_float32 = audio_as_np_int16.astype(np.float32) / np.iinfo(np.int16).max
# Transcribe the audio using the Whisper model
result = model.transcribe(audio_as_np_float32)
text = result['text'].strip()
return {"transcription": text}