Spaces:
Running
Running
import pandas as pd | |
from app.models import Architecture, Estimate, Metadata, Tokenizer | |
from app.utils import abbreviate_number, human_readable_size | |
def get_model_info_df( | |
metadata: Metadata, architecture: Architecture, tokenizer: Tokenizer | |
): | |
return pd.DataFrame( | |
[ | |
{ | |
"Type": metadata.type_, | |
"Name": metadata.name, | |
"Architecture": metadata.architecture, | |
"File Size": human_readable_size(metadata.file_size), | |
"Parameters": abbreviate_number(metadata.parameters), | |
"Bits Per Weight": round(metadata.bits_per_weight, 2), | |
"Maximum Context Length": architecture.maximum_context_length, | |
"Vocabulary Length": architecture.vocabulary_length, | |
"Tokenizer Model": tokenizer.model, | |
"Tokens Size": human_readable_size(tokenizer.tokens_size), | |
} | |
] | |
) | |
def get_estimate_df(estimate: Estimate): | |
return pd.DataFrame( | |
[ | |
{ | |
"Context Size": estimate.context_size, | |
"Flash Attention": estimate.flash_attention, | |
"Logical Batch Size": estimate.logical_batch_size, | |
"Physical Batch Size": estimate.physical_batch_size, | |
} | |
] | |
) | |