Spaces:
Running
Running
[add] device model
Browse files- .vscode/settings.json +1 -1
- app/devices.py +7 -0
- devices.json +15 -15
- main.py +17 -6
.vscode/settings.json
CHANGED
@@ -3,7 +3,7 @@
|
|
3 |
"editor.defaultFormatter": "ms-python.black-formatter",
|
4 |
"editor.formatOnSave": true,
|
5 |
"editor.codeActionsOnSave": {
|
6 |
-
"source.organizeImports":
|
7 |
},
|
8 |
},
|
9 |
"isort.args":["--profile", "black"],
|
|
|
3 |
"editor.defaultFormatter": "ms-python.black-formatter",
|
4 |
"editor.formatOnSave": true,
|
5 |
"editor.codeActionsOnSave": {
|
6 |
+
"source.organizeImports": "explicit"
|
7 |
},
|
8 |
},
|
9 |
"isort.args":["--profile", "black"],
|
app/devices.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pydantic import BaseModel, Field
|
2 |
+
|
3 |
+
|
4 |
+
class Device(BaseModel):
|
5 |
+
memory_size: int = Field(alias="memorySize")
|
6 |
+
memory_bandwidth: float = Field(alias="memoryBandwidth")
|
7 |
+
FLOPS: str
|
devices.json
CHANGED
@@ -1,15 +1,15 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
1 |
+
{
|
2 |
+
"V100": {"memorySize": 32, "memoryBandwidth": 900, "FLOPS": "112.224TFLOPS"},
|
3 |
+
"T4": {"memorySize": 16, "memoryBandwidth": 320, "FLOPS": "64.8TFLOPS"},
|
4 |
+
"A2": {"memorySize": 16, "memoryBandwidth": 200, "FLOPS": "18.124TFLOPS"},
|
5 |
+
"A10": {"memorySize": 24, "memoryBandwidth": 600, "FLOPS": "124.96TFLOPS"},
|
6 |
+
"A16*4": {"memorySize": 64, "memoryBandwidth": 800, "FLOPS": "73.728TFLOPS"},
|
7 |
+
"A30": {"memorySize": 24, "memoryBandwidth": 933.1, "FLOPS": "165.12TFLOPS"},
|
8 |
+
"A40": {"memorySize": 48, "memoryBandwidth": 695.8, "FLOPS": "149.68TFLOPS"},
|
9 |
+
"A100-40GB": {"memorySize": 40, "memoryBandwidth": 1555, "FLOPS": "312.0TFLOPS"},
|
10 |
+
"A100-80GB": {"memorySize": 80, "memoryBandwidth": 1555, "FLOPS": "312.0TFLOPS"},
|
11 |
+
"H100-PCIE": {"memorySize": 80, "memoryBandwidth": 2039, "FLOPS": "756.449TFLOPS"},
|
12 |
+
"H100-SXM": {"memorySize": 80, "memoryBandwidth": 3352, "FLOPS": "989.43TFLOPS"},
|
13 |
+
"L40": {"memorySize": 48, "memoryBandwidth": 864, "FLOPS": "362.066TFLOPS"},
|
14 |
+
"L4": {"memorySize": 24, "memoryBandwidth": 300, "FLOPS": "121.0TFLOPS"}
|
15 |
+
}
|
main.py
CHANGED
@@ -5,6 +5,7 @@ from pathlib import Path
|
|
5 |
import gradio as gr
|
6 |
import pandas as pd
|
7 |
|
|
|
8 |
from app.models import GgufParser
|
9 |
from app.tables import get_estimate_df, get_model_info_df
|
10 |
|
@@ -13,11 +14,23 @@ gguf_parser = Path("gguf-parser-linux-amd64")
|
|
13 |
gguf_parser_url = f"https://github.com/gpustack/gguf-parser-go/releases/download/{GGUF_PARSER_VERSION}/{gguf_parser}"
|
14 |
DEFAULT_URL = "https://huggingface.co/phate334/Llama-3.1-8B-Instruct-Q4_K_M-GGUF/resolve/main/llama-3.1-8b-instruct-q4_k_m.gguf"
|
15 |
|
|
|
|
|
|
|
16 |
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
try:
|
|
|
|
|
|
|
19 |
res = os.popen(
|
20 |
-
f
|
21 |
).read()
|
22 |
parser_result = GgufParser.model_validate_json(res)
|
23 |
|
@@ -36,17 +49,15 @@ if __name__ == "__main__":
|
|
36 |
if not gguf_parser.exists():
|
37 |
os.system(f"wget {gguf_parser_url}&&chmod +x {gguf_parser}")
|
38 |
|
39 |
-
with open("devices.json", "r", encoding="utf-8") as f:
|
40 |
-
device_list = json.load(f)
|
41 |
-
|
42 |
with gr.Blocks(title="GGUF Parser") as iface:
|
43 |
url_input = gr.Textbox(placeholder="Enter GGUF URL", value=DEFAULT_URL)
|
44 |
context_length = gr.Number(label="Context Length", value=8192)
|
|
|
45 |
submit_btn = gr.Button("Send")
|
46 |
|
47 |
submit_btn.click(
|
48 |
fn=process_url,
|
49 |
-
inputs=[url_input, context_length],
|
50 |
outputs=[
|
51 |
gr.DataFrame(label="Model Info"),
|
52 |
gr.DataFrame(label="ESTIMATE"),
|
|
|
5 |
import gradio as gr
|
6 |
import pandas as pd
|
7 |
|
8 |
+
from app.devices import Device
|
9 |
from app.models import GgufParser
|
10 |
from app.tables import get_estimate_df, get_model_info_df
|
11 |
|
|
|
14 |
gguf_parser_url = f"https://github.com/gpustack/gguf-parser-go/releases/download/{GGUF_PARSER_VERSION}/{gguf_parser}"
|
15 |
DEFAULT_URL = "https://huggingface.co/phate334/Llama-3.1-8B-Instruct-Q4_K_M-GGUF/resolve/main/llama-3.1-8b-instruct-q4_k_m.gguf"
|
16 |
|
17 |
+
with open("devices.json", "r", encoding="utf-8") as f:
|
18 |
+
data = json.load(f)
|
19 |
+
devices = {key: Device(**value) for key, value in data.items()}
|
20 |
|
21 |
+
device_options = [
|
22 |
+
f"{key} (Memory: {value.memory_size}GB, Bandwidth: {value.memory_bandwidth}GB/s)"
|
23 |
+
for key, value in devices.items()
|
24 |
+
]
|
25 |
+
|
26 |
+
|
27 |
+
def process_url(url, context_length, device_selection):
|
28 |
try:
|
29 |
+
# 取得選擇的裝置鍵值
|
30 |
+
device_key = device_selection.split(" ")[0]
|
31 |
+
selected_device = devices[device_key]
|
32 |
res = os.popen(
|
33 |
+
f'./{gguf_parser} --ctx-size={context_length} -url {url} --device-metric "{selected_device.FLOPS};{selected_device.memory_bandwidth}GBps" --json'
|
34 |
).read()
|
35 |
parser_result = GgufParser.model_validate_json(res)
|
36 |
|
|
|
49 |
if not gguf_parser.exists():
|
50 |
os.system(f"wget {gguf_parser_url}&&chmod +x {gguf_parser}")
|
51 |
|
|
|
|
|
|
|
52 |
with gr.Blocks(title="GGUF Parser") as iface:
|
53 |
url_input = gr.Textbox(placeholder="Enter GGUF URL", value=DEFAULT_URL)
|
54 |
context_length = gr.Number(label="Context Length", value=8192)
|
55 |
+
device_dropdown = gr.Dropdown(label="Select Device", choices=device_options)
|
56 |
submit_btn = gr.Button("Send")
|
57 |
|
58 |
submit_btn.click(
|
59 |
fn=process_url,
|
60 |
+
inputs=[url_input, context_length, device_dropdown],
|
61 |
outputs=[
|
62 |
gr.DataFrame(label="Model Info"),
|
63 |
gr.DataFrame(label="ESTIMATE"),
|