File size: 12,083 Bytes
4706395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1005357
4706395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1005357
4706395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cc9fa2
4706395
93014b5
72f4eda
4706395
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
# Description: Classification models
from transformers import AutoModel, AutoTokenizer, BatchEncoding, TrainingArguments, Trainer
from functools import partial
from huggingface_hub import snapshot_download
from huggingface_hub.constants import HF_HUB_CACHE
from accelerate import Accelerator
from accelerate.utils import find_executable_batch_size as auto_find_batch_size
from datasets import load_dataset, Dataset
from torch.utils.data import DataLoader
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import json
import os
from tqdm import tqdm
import pandas as pd

import matplotlib.pyplot as plt
from sklearn.metrics import (
    ConfusionMatrixDisplay,
    accuracy_score,
    classification_report,
    confusion_matrix,
    f1_score,
    recall_score
)

BASE_PATH = os.path.dirname(os.path.abspath(__file__))


class MultiHeadClassification(nn.Module):
    """
    MultiHeadClassification

    An easy to use multi-head classification model. It takes a backbone model and a dictionary of head configurations.
    It can be used to train multiple classification tasks at once using a single backbone model.

    Apart from joint training, it also supports training individual heads separately, providing a simple way to freeze
    and unfreeze heads.

    Example:
    >>> from transformers import AutoModel, AutoTokenizer
        >>> from torch.optim import AdamW
        >>> import torch
        >>> import time
        >>> import torch.nn as nn
        >>>
        >>> # Manually load backbone model to create model
        >>> backbone = AutoModel.from_pretrained('BAAI/bge-m3')
        >>> model = MultiHeadClassification(backbone, {'binary': 2, 'sentiment': 3, 'something': 4}).to('cuda')
        >>> print(model)
        >>> # Load tokenizer for data preprocessing
        >>> tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-m3')
        >>> # some training data
        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt", padding=True, truncation=True)
        >>> optimizer = AdamW(model.parameters(), lr=5e-4)
        >>> samples = tokenizer(["Hello, my dog is cute", "Hello, my dog is cute", "I like turtles"], return_tensors="pt", padding=True, truncation=True).to('cuda')
        >>> labels = {'binary': torch.tensor([0, 0, 1]), 'sentiment': torch.tensor([0, 1, 2]), 'something': torch.tensor([0, 1, 2])}
        >>> model.freeze_backbone()
        >>> model.train(True)
        >>> for i in range(10):
        ...     optimizer.zero_grad()
        ...     outputs = model(samples)
        ...     loss = sum([nn.CrossEntropyLoss()(outputs[name].cpu(), labels[name]) for name in model.heads.keys()])
        ...     loss.backward()
        ...     optimizer.step()
        ...     print(loss.item())
        ...     #time.sleep(1)
        ... print(model(samples))
        >>> # Save full model
        >>> model.save('model.pth')
        >>> # Save head only
        >>> model.save_head('binary', 'binary.pth')
        >>> # Load full model
        >>> model = MultiHeadClassification(backbone, {}).to('cuda')
        >>> model.load('model.pth')
        >>> # Load head only
        >>> model = MultiHeadClassification(backbone, {}).to('cuda')
        >>> model.load_head('binary', 'binary.pth')
        >>> # Adding new head
        >>> model.add_head('new_head', 3)
        >>> print(model)
        >>> # extend dataset with data for new head
        >>> labels['new_head'] = torch.tensor([0, 1, 2])
        >>> # Freeze all heads and backbone
        >>> model.freeze_all()
        >>> # Only unfreeze new head
        >>> model.unfreeze_head('new_head')
        >>> model.train(True)
        >>> for i in range(10):
        ...     optimizer.zero_grad()
        ...     outputs = model(samples)
        ...     loss = sum([nn.CrossEntropyLoss()(outputs[name].cpu(), labels[name]) for name in model.heads.keys()])
        ...     loss.backward()
        ...     optimizer.step()
        ...     print(loss.item())
        >>> print(model(samples))

    Args:
        backbone (transformers.PreTrainedModel): A pretrained transformer model
        head_config (dict): A dictionary with head configurations. The key is the head name and the value is the number
            of classes for that head.
    """
    def __init__(self, backbone, head_config, dropout=0.1, l2_reg=0.01):
        super().__init__()
        self.backbone = backbone
        self.num_heads = len(head_config)
        self.heads = nn.ModuleDict({
            name: nn.Linear(backbone.config.hidden_size, num_classes)
            for name, num_classes in head_config.items()
        })
        self.do = nn.Dropout(dropout)
        self.l2_reg = l2_reg
        self.device = 'cpu'
        self.torch_dtype = torch.float16
        self.head_config = head_config

    def forward(self, x, head_names=None) -> dict:
        """
        Forward pass of the model.

        Requires tokenizer output as input. The input should be a dictionary with keys 'input_ids', 'attention_mask'.

        Args:
            x (dict): Tokenizer output
            head_names (list): (optional) List of head names to return logits for. If None, returns logits for all heads.
        
        Returns:
            dict: A dictionary with head names as keys and logits as values
        """
        x = self.backbone(**x, return_dict=True, output_hidden_states=True).last_hidden_state[:, 0, :]
        x = self.do(x)
        if head_names is None:
            return {name: head(x) for name, head in self.heads.items()}
        return {name: head(x) for name, head in self.heads.items() if name in head_names}

    def get_l2_loss(self):
        """
        Getter for L2 regularization loss

        Returns:
            torch.Tensor: L2 regularization loss
        """
        l2_loss = torch.tensor(0.).to(self.device)
        for param in self.parameters():
            if param.requires_grad:
                l2_loss += torch.norm(param, 2)
        return (self.l2_reg * l2_loss).to(self.device)

    def to(self, *args, **kwargs):
        super().to(*args, **kwargs)
        if isinstance(args[0], torch.dtype):
            self.torch_dtype = args[0]
        elif isinstance(args[0], str):
            self.device = args[0]
        return self

    def load_head(self, head_name, path):
        """
        Load head from a file

        Args:
            head_name (str): Name of the head
            path (str): Path to the file

        Returns:
            None
        """
        model = torch.load(path, map_location=self.device)
        if head_name in self.heads:
            num_classes = model['weight'].shape[0]
            self.heads[head_name].load_state_dict(model)
            self.to(self.torch_dtype).to(self.device)
            self.head_config[head_name] = num_classes
            return

        assert model['weight'].shape[1] == self.backbone.config.hidden_size
        num_classes = model['weight'].shape[0]
        self.heads[head_name] = nn.Linear(self.backbone.config.hidden_size, num_classes)
        self.heads[head_name].load_state_dict(model)
        self.head_config[head_name] = num_classes

        self.to(self.torch_dtype).to(self.device)

    def save_head(self, head_name, path):
        """
        Save head to a file

        Args:
            head_name (str): Name of the head
            path (str): Path to the file
        """
        torch.save(self.heads[head_name].state_dict(), path)

    def save(self, path):
        """
        Save the full model to a file

        Args:
            path (str): Path to the file
        """
        torch.save(self.state_dict(), path)

    def load(self, path):
        """
        Load the full model from a file

        Args:
            path (str): Path to the file
        """
        self.load_state_dict(torch.load(path, map_location=self.device))
        self.to(self.torch_dtype).to(self.device)

    def save_backbone(self, path):
        """
        Save the backbone to a file

        Args:
            path (str): Path to the file
        """
        self.backbone.save_pretrained(path)

    def load_backbone(self, path):
        """
        Load the backbone from a file

        Args:
            path (str): Path to the file
        """
        self.backbone = AutoModel.from_pretrained(path)
        self.to(self.torch_dtype).to(self.device)

    def freeze_backbone(self):
        """ Freeze the backbone """
        for param in self.backbone.parameters():
            param.requires_grad = False

    def unfreeze_backbone(self):
        """ Unfreeze the backbone """
        for param in self.backbone.parameters():
            param.requires_grad = True

    def freeze_head(self, head_name):
        """
        Freeze a head by name

        Args:
            head_name (str): Name of the head
        """
        for param in self.heads[head_name].parameters():
            param.requires_grad = False

    def unfreeze_head(self, head_name):
        """
        Unfreeze a head by name

        Args:
            head_name (str): Name of the head
        """
        for param in self.heads[head_name].parameters():
            param.requires_grad = True

    def freeze_all_heads(self):
        """ Freeze all heads """
        for head_name in self.heads.keys():
            self.freeze_head(head_name)

    def unfreeze_all_heads(self):
        """ Unfreeze all heads """
        for head_name in self.heads.keys():
            self.unfreeze_head(head_name)

    def freeze_all(self):
        """ Freeze all """
        self.freeze_backbone()
        self.freeze_all_heads()

    def unfreeze_all(self):
        """ Unfreeze all """
        self.unfreeze_backbone()
        self.unfreeze_all_heads()

    def add_head(self, head_name, num_classes):
        """
        Add a new head to the model

        Args:
            head_name (str): Name of the head
            num_classes (int): Number of classes for the head
        """
        self.heads[head_name] = nn.Linear(self.backbone.config.hidden_size, num_classes)
        self.heads[head_name].to(self.torch_dtype).to(self.device)
        self.head_config[head_name] = num_classes

    def remove_head(self, head_name):
        """
        Remove a head from the model
        """
        if head_name not in self.heads:
            raise ValueError(f'Head {head_name} not found')
        del self.heads[head_name]
        del self.head_config[head_name]

    @classmethod
    def from_pretrained(cls, model_name, head_config=None, dropout=0.1, l2_reg=0.01):
        """
        Load a pretrained model from Huggingface model hub

        Args:
            model_name (str): Name of the model
            head_config (dict): Head configuration
            dropout (float): Dropout rate
            l2_reg (float): L2 regularization rate
        """
        if head_config is None:
            head_config = {}
        # check if model exists locally
        hf_cache_dir = HF_HUB_CACHE
        model_path = os.path.join(hf_cache_dir, model_name)
        if os.path.exists(model_path):
            return cls._from_directory(model_path, head_config, dropout, l2_reg)

        model_path = snapshot_download(repo_id=model_name, cache_dir=hf_cache_dir)
        return cls._from_directory(model_path, head_config, dropout, l2_reg)

    @classmethod
    def _from_directory(cls, model_path, head_config, dropout=0.1, l2_reg=0.01):
        """
        Load a model from a directory

        Args:
            model_path (str): Path to the model directory
            head_config (dict): Head configuration
            dropout (float): Dropout rate
            l2_reg (float): L2 regularization rate
        """
        backbone = AutoModel.from_pretrained(os.path.join(model_path, 'pretrained/backbone'))
        instance = cls(backbone, head_config, dropout, l2_reg)
        instance.load(os.path.join(model_path, 'multi-head-sequence-classification-model-model.pth'))
        instance.head_config = {k: v.weight.shape[1] for k, v in instance.heads.items()}
        return instance