Spaces:
Runtime error
Runtime error
File size: 12,083 Bytes
4706395 1005357 4706395 1005357 4706395 6cc9fa2 4706395 93014b5 72f4eda 4706395 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
# Description: Classification models
from transformers import AutoModel, AutoTokenizer, BatchEncoding, TrainingArguments, Trainer
from functools import partial
from huggingface_hub import snapshot_download
from huggingface_hub.constants import HF_HUB_CACHE
from accelerate import Accelerator
from accelerate.utils import find_executable_batch_size as auto_find_batch_size
from datasets import load_dataset, Dataset
from torch.utils.data import DataLoader
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import json
import os
from tqdm import tqdm
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.metrics import (
ConfusionMatrixDisplay,
accuracy_score,
classification_report,
confusion_matrix,
f1_score,
recall_score
)
BASE_PATH = os.path.dirname(os.path.abspath(__file__))
class MultiHeadClassification(nn.Module):
"""
MultiHeadClassification
An easy to use multi-head classification model. It takes a backbone model and a dictionary of head configurations.
It can be used to train multiple classification tasks at once using a single backbone model.
Apart from joint training, it also supports training individual heads separately, providing a simple way to freeze
and unfreeze heads.
Example:
>>> from transformers import AutoModel, AutoTokenizer
>>> from torch.optim import AdamW
>>> import torch
>>> import time
>>> import torch.nn as nn
>>>
>>> # Manually load backbone model to create model
>>> backbone = AutoModel.from_pretrained('BAAI/bge-m3')
>>> model = MultiHeadClassification(backbone, {'binary': 2, 'sentiment': 3, 'something': 4}).to('cuda')
>>> print(model)
>>> # Load tokenizer for data preprocessing
>>> tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-m3')
>>> # some training data
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt", padding=True, truncation=True)
>>> optimizer = AdamW(model.parameters(), lr=5e-4)
>>> samples = tokenizer(["Hello, my dog is cute", "Hello, my dog is cute", "I like turtles"], return_tensors="pt", padding=True, truncation=True).to('cuda')
>>> labels = {'binary': torch.tensor([0, 0, 1]), 'sentiment': torch.tensor([0, 1, 2]), 'something': torch.tensor([0, 1, 2])}
>>> model.freeze_backbone()
>>> model.train(True)
>>> for i in range(10):
... optimizer.zero_grad()
... outputs = model(samples)
... loss = sum([nn.CrossEntropyLoss()(outputs[name].cpu(), labels[name]) for name in model.heads.keys()])
... loss.backward()
... optimizer.step()
... print(loss.item())
... #time.sleep(1)
... print(model(samples))
>>> # Save full model
>>> model.save('model.pth')
>>> # Save head only
>>> model.save_head('binary', 'binary.pth')
>>> # Load full model
>>> model = MultiHeadClassification(backbone, {}).to('cuda')
>>> model.load('model.pth')
>>> # Load head only
>>> model = MultiHeadClassification(backbone, {}).to('cuda')
>>> model.load_head('binary', 'binary.pth')
>>> # Adding new head
>>> model.add_head('new_head', 3)
>>> print(model)
>>> # extend dataset with data for new head
>>> labels['new_head'] = torch.tensor([0, 1, 2])
>>> # Freeze all heads and backbone
>>> model.freeze_all()
>>> # Only unfreeze new head
>>> model.unfreeze_head('new_head')
>>> model.train(True)
>>> for i in range(10):
... optimizer.zero_grad()
... outputs = model(samples)
... loss = sum([nn.CrossEntropyLoss()(outputs[name].cpu(), labels[name]) for name in model.heads.keys()])
... loss.backward()
... optimizer.step()
... print(loss.item())
>>> print(model(samples))
Args:
backbone (transformers.PreTrainedModel): A pretrained transformer model
head_config (dict): A dictionary with head configurations. The key is the head name and the value is the number
of classes for that head.
"""
def __init__(self, backbone, head_config, dropout=0.1, l2_reg=0.01):
super().__init__()
self.backbone = backbone
self.num_heads = len(head_config)
self.heads = nn.ModuleDict({
name: nn.Linear(backbone.config.hidden_size, num_classes)
for name, num_classes in head_config.items()
})
self.do = nn.Dropout(dropout)
self.l2_reg = l2_reg
self.device = 'cpu'
self.torch_dtype = torch.float16
self.head_config = head_config
def forward(self, x, head_names=None) -> dict:
"""
Forward pass of the model.
Requires tokenizer output as input. The input should be a dictionary with keys 'input_ids', 'attention_mask'.
Args:
x (dict): Tokenizer output
head_names (list): (optional) List of head names to return logits for. If None, returns logits for all heads.
Returns:
dict: A dictionary with head names as keys and logits as values
"""
x = self.backbone(**x, return_dict=True, output_hidden_states=True).last_hidden_state[:, 0, :]
x = self.do(x)
if head_names is None:
return {name: head(x) for name, head in self.heads.items()}
return {name: head(x) for name, head in self.heads.items() if name in head_names}
def get_l2_loss(self):
"""
Getter for L2 regularization loss
Returns:
torch.Tensor: L2 regularization loss
"""
l2_loss = torch.tensor(0.).to(self.device)
for param in self.parameters():
if param.requires_grad:
l2_loss += torch.norm(param, 2)
return (self.l2_reg * l2_loss).to(self.device)
def to(self, *args, **kwargs):
super().to(*args, **kwargs)
if isinstance(args[0], torch.dtype):
self.torch_dtype = args[0]
elif isinstance(args[0], str):
self.device = args[0]
return self
def load_head(self, head_name, path):
"""
Load head from a file
Args:
head_name (str): Name of the head
path (str): Path to the file
Returns:
None
"""
model = torch.load(path, map_location=self.device)
if head_name in self.heads:
num_classes = model['weight'].shape[0]
self.heads[head_name].load_state_dict(model)
self.to(self.torch_dtype).to(self.device)
self.head_config[head_name] = num_classes
return
assert model['weight'].shape[1] == self.backbone.config.hidden_size
num_classes = model['weight'].shape[0]
self.heads[head_name] = nn.Linear(self.backbone.config.hidden_size, num_classes)
self.heads[head_name].load_state_dict(model)
self.head_config[head_name] = num_classes
self.to(self.torch_dtype).to(self.device)
def save_head(self, head_name, path):
"""
Save head to a file
Args:
head_name (str): Name of the head
path (str): Path to the file
"""
torch.save(self.heads[head_name].state_dict(), path)
def save(self, path):
"""
Save the full model to a file
Args:
path (str): Path to the file
"""
torch.save(self.state_dict(), path)
def load(self, path):
"""
Load the full model from a file
Args:
path (str): Path to the file
"""
self.load_state_dict(torch.load(path, map_location=self.device))
self.to(self.torch_dtype).to(self.device)
def save_backbone(self, path):
"""
Save the backbone to a file
Args:
path (str): Path to the file
"""
self.backbone.save_pretrained(path)
def load_backbone(self, path):
"""
Load the backbone from a file
Args:
path (str): Path to the file
"""
self.backbone = AutoModel.from_pretrained(path)
self.to(self.torch_dtype).to(self.device)
def freeze_backbone(self):
""" Freeze the backbone """
for param in self.backbone.parameters():
param.requires_grad = False
def unfreeze_backbone(self):
""" Unfreeze the backbone """
for param in self.backbone.parameters():
param.requires_grad = True
def freeze_head(self, head_name):
"""
Freeze a head by name
Args:
head_name (str): Name of the head
"""
for param in self.heads[head_name].parameters():
param.requires_grad = False
def unfreeze_head(self, head_name):
"""
Unfreeze a head by name
Args:
head_name (str): Name of the head
"""
for param in self.heads[head_name].parameters():
param.requires_grad = True
def freeze_all_heads(self):
""" Freeze all heads """
for head_name in self.heads.keys():
self.freeze_head(head_name)
def unfreeze_all_heads(self):
""" Unfreeze all heads """
for head_name in self.heads.keys():
self.unfreeze_head(head_name)
def freeze_all(self):
""" Freeze all """
self.freeze_backbone()
self.freeze_all_heads()
def unfreeze_all(self):
""" Unfreeze all """
self.unfreeze_backbone()
self.unfreeze_all_heads()
def add_head(self, head_name, num_classes):
"""
Add a new head to the model
Args:
head_name (str): Name of the head
num_classes (int): Number of classes for the head
"""
self.heads[head_name] = nn.Linear(self.backbone.config.hidden_size, num_classes)
self.heads[head_name].to(self.torch_dtype).to(self.device)
self.head_config[head_name] = num_classes
def remove_head(self, head_name):
"""
Remove a head from the model
"""
if head_name not in self.heads:
raise ValueError(f'Head {head_name} not found')
del self.heads[head_name]
del self.head_config[head_name]
@classmethod
def from_pretrained(cls, model_name, head_config=None, dropout=0.1, l2_reg=0.01):
"""
Load a pretrained model from Huggingface model hub
Args:
model_name (str): Name of the model
head_config (dict): Head configuration
dropout (float): Dropout rate
l2_reg (float): L2 regularization rate
"""
if head_config is None:
head_config = {}
# check if model exists locally
hf_cache_dir = HF_HUB_CACHE
model_path = os.path.join(hf_cache_dir, model_name)
if os.path.exists(model_path):
return cls._from_directory(model_path, head_config, dropout, l2_reg)
model_path = snapshot_download(repo_id=model_name, cache_dir=hf_cache_dir)
return cls._from_directory(model_path, head_config, dropout, l2_reg)
@classmethod
def _from_directory(cls, model_path, head_config, dropout=0.1, l2_reg=0.01):
"""
Load a model from a directory
Args:
model_path (str): Path to the model directory
head_config (dict): Head configuration
dropout (float): Dropout rate
l2_reg (float): L2 regularization rate
"""
backbone = AutoModel.from_pretrained(os.path.join(model_path, 'pretrained/backbone'))
instance = cls(backbone, head_config, dropout, l2_reg)
instance.load(os.path.join(model_path, 'multi-head-sequence-classification-model-model.pth'))
instance.head_config = {k: v.weight.shape[1] for k, v in instance.heads.items()}
return instance
|