Spaces:
Sleeping
Sleeping
# Copyright 2022 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import torch.nn as nn | |
from .imports import is_fp8_available | |
if is_fp8_available(): | |
import transformer_engine.pytorch as te | |
def convert_model(model, to_transformer_engine=True, _convert_linear=True, _convert_ln=True): | |
""" | |
Recursively converts the linear and layernorm layers of a model to their `transformers_engine` counterpart. | |
""" | |
if not is_fp8_available(): | |
raise ImportError("Using `convert_model` requires transformer_engine to be installed.") | |
for name, module in model.named_children(): | |
if isinstance(module, nn.Linear) and to_transformer_engine and _convert_linear: | |
# Return early if the linear layer weights are not multiples of 16 | |
if any(p % 16 != 0 for p in module.weight.shape): | |
return | |
has_bias = module.bias is not None | |
te_module = te.Linear( | |
module.in_features, module.out_features, bias=has_bias, params_dtype=module.weight.dtype | |
) | |
te_module.weight.data = module.weight.data.clone() | |
if has_bias: | |
te_module.bias.data = module.bias.data.clone() | |
setattr(model, name, te_module) | |
elif isinstance(module, nn.LayerNorm) and to_transformer_engine and _convert_ln: | |
te_module = te.LayerNorm(module.normalized_shape[0], eps=module.eps, params_dtype=module.weight.dtype) | |
te_module.weight.data = module.weight.data.clone() | |
te_module.bias.data = module.bias.data.clone() | |
setattr(model, name, te_module) | |
elif isinstance(module, te.Linear) and not to_transformer_engine and _convert_linear: | |
has_bias = module.bias is not None | |
new_module = nn.Linear( | |
module.in_features, module.out_features, bias=has_bias, params_dtype=module.weight.dtype | |
) | |
new_module.weight.data = module.weight.data.clone() | |
if has_bias: | |
new_module.bias.data = module.bias.data.clone() | |
setattr(model, name, new_module) | |
elif isinstance(module, te.LayerNorm) and not to_transformer_engine and _convert_ln: | |
new_module = nn.LayerNorm(module.normalized_shape[0], eps=module.eps, params_dtype=module.weight.dtype) | |
new_module.weight.data = module.weight.data.clone() | |
new_module.bias.data = module.bias.data.clone() | |
setattr(model, name, new_module) | |
else: | |
convert_model( | |
module, | |
to_transformer_engine=to_transformer_engine, | |
_convert_linear=_convert_linear, | |
_convert_ln=_convert_ln, | |
) | |
def has_transformer_engine_layers(model): | |
""" | |
Returns whether a given model has some `transformer_engine` layer or not. | |
""" | |
if not is_fp8_available(): | |
raise ImportError("Using `has_transformer_engine_layers` requires transformer_engine to be installed.") | |
for m in model.modules(): | |
if isinstance(m, (te.LayerNorm, te.Linear)): | |
return True | |
return False | |