Spaces:
Sleeping
Sleeping
Elite-text-gen-web
/
venv
/lib
/python3.10
/site-packages
/bitsandbytes
/research
/autograd
/_functions.py
import operator | |
import warnings | |
from dataclasses import dataclass | |
from functools import reduce # Required in Python 3 | |
import torch | |
import bitsandbytes.functional as F | |
from bitsandbytes.autograd._functions import MatmulLtState, GlobalOutlierPooler | |
# math.prod not compatible with python < 3.8 | |
def prod(iterable): | |
return reduce(operator.mul, iterable, 1) | |
tensor = torch.Tensor | |
class MatMulFP8Mixed(torch.autograd.Function): | |
# forward is the same, but we added the fallback for pre-turing GPUs | |
# backward is mostly the same, but adds one extra clause (see "elif state.CxB is not None") | |
def forward(ctx, A, B, out=None, fw_code=None, bw_code=None, bsz=1024, bsz2=1024): | |
# default of pytorch behavior if inputs are empty | |
ctx.is_empty = False | |
if prod(A.shape) == 0: | |
ctx.is_empty = True | |
ctx.A = A | |
ctx.B = B | |
B_shape = B.shape | |
if A.shape[-1] == B_shape[0]: | |
return torch.empty(A.shape[:-1] + B_shape[1:], dtype=A.dtype, device=A.device) | |
else: | |
return torch.empty(A.shape[:-1] + B_shape[:1], dtype=A.dtype, device=A.device) | |
# 1. Dequantize | |
# 2. MatmulnN | |
cA, state = F.quantize_blockwise(A, code=fw_code, blocksize=bsz) | |
fp8A = F.dequantize_blockwise(cA, state, blocksize=bsz).to(A.dtype) | |
cB, state = F.quantize(B.float(), code=fw_code) | |
fp8B = F.dequantize(cB, state).to(B.dtype) | |
output = torch.matmul(fp8A, fp8B) | |
# output is half | |
# 3. Save state | |
ctx.fw_code = fw_code | |
ctx.bw_code = bw_code | |
ctx.bsz = bsz | |
ctx.bsz2 = bsz2 | |
ctx.dtype_A, ctx.dtype_B = A.dtype, B.dtype | |
if any(ctx.needs_input_grad[:2]): | |
# NOTE: we send back A, and re-quant. | |
ctx.tensors = (A, fp8B) | |
else: | |
ctx.tensors = (None, None) | |
return output | |
def backward(ctx, grad_output): | |
if ctx.is_empty: | |
return torch.zeros_like(ctx.A), torch.zeros_like(ctx.B), None, None, None, None, None | |
req_gradA, req_gradB, _, _, _, _, _ = ctx.needs_input_grad | |
A, B = ctx.tensors | |
grad_A, grad_B = None, None | |
# TODO: Fix blocksize to be output_dim | |
cgrad_out, state = F.quantize_blockwise(grad_output, code=ctx.bw_code, blocksize=ctx.bsz2) | |
fp8out = F.dequantize_blockwise(cgrad_out, state, blocksize=ctx.bsz2).to(grad_output.dtype) | |
# cgrad_output_2, state_2 = F.quantize(grad_output.float(), code=ctx.bw_code) | |
# fp8out_2 = F.dequantize(cgrad_output_2, state_2).to(grad_output.dtype) | |
# grad_output_reshape = grad_output.reshape(-1, grad_output.shape[-1]).contiguous() | |
# fp8grad_transpose, stategrad_transpose = F.vectorwise_quant(grad_output_reshape, dim=0, quant_type='vector') | |
# fp8out_transpose = (fp8grad_transpose / 7) * stategrad_transpose | |
# fp8out_transpose = fp8out_transpose.view(grad_output.shape[0], grad_output.shape[1], grad_output.shape[2]) | |
# not supported by PyTorch. TODO: create work-around | |
if req_gradA: | |
grad_A = torch.matmul(fp8out, B.t().to(fp8out.dtype)).to(A.dtype) | |
if req_gradB: | |
if len(A.shape) == 3: | |
At = A.transpose(2, 1).contiguous() | |
else: | |
At = A.transpose(1, 0).contiguous() | |
# cA, state = F.quantize(At.float(), code=ctx.fw_code) | |
# fp8At = F.dequantize(cA, state).to(A.dtype) | |
grad_B = torch.matmul(At.to(grad_output.dtype), grad_output).to(B.dtype) | |
return grad_A, grad_B, None, None, None, None, None | |
class MatMulFP8Global(torch.autograd.Function): | |
# forward is the same, but we added the fallback for pre-turing GPUs | |
# backward is mostly the same, but adds one extra clause (see "elif state.CxB is not None") | |
def forward(ctx, A, B, out=None, fw_code=None, bw_code=None, bsz=1024, bsz2=1024): | |
# default of pytorch behavior if inputs are empty | |
ctx.is_empty = False | |
if prod(A.shape) == 0: | |
ctx.is_empty = True | |
ctx.A = A | |
ctx.B = B | |
B_shape = B.shape | |
if A.shape[-1] == B_shape[0]: | |
return torch.empty(A.shape[:-1] + B_shape[1:], dtype=A.dtype, device=A.device) | |
else: | |
return torch.empty(A.shape[:-1] + B_shape[:1], dtype=A.dtype, device=A.device) | |
# 1. Dequantize | |
# 2. MatmulnN | |
cA, state = F.quantize(A.float(), code=fw_code) | |
fp8A = F.dequantize(cA, state).to(A.dtype) | |
cB, state = F.quantize(B.float(), code=fw_code) | |
fp8B = F.dequantize(cB, state).to(B.dtype) | |
output = torch.matmul(fp8A, fp8B) | |
# output is half | |
# 3. Save state | |
ctx.fw_code = fw_code | |
ctx.bw_code = bw_code | |
ctx.bsz = bsz | |
ctx.bsz2 = bsz2 | |
ctx.dtype_A, ctx.dtype_B = A.dtype, B.dtype | |
if any(ctx.needs_input_grad[:2]): | |
# NOTE: we send back A, and re-quant. | |
ctx.tensors = (A, fp8B) | |
else: | |
ctx.tensors = (None, None) | |
return output | |
def backward(ctx, grad_output): | |
if ctx.is_empty: | |
return torch.zeros_like(ctx.A), torch.zeros_like(ctx.B), None, None, None, None, None | |
req_gradA, req_gradB, _, _, _, _, _ = ctx.needs_input_grad | |
A, B = ctx.tensors | |
grad_A, grad_B = None, None | |
# TODO: Fix blocksize to be output_dim | |
cgrad_out, state = F.quantize(grad_output.float(), code=ctx.bw_code) | |
fp8out = F.dequantize(cgrad_out, state).to(grad_output.dtype) | |
# cgrad_output_2, state_2 = F.quantize(grad_output.float(), code=ctx.bw_code) | |
# fp8out_2 = F.dequantize(cgrad_output_2, state_2).to(grad_output.dtype) | |
# grad_output_reshape = grad_output.reshape(-1, grad_output.shape[-1]).contiguous() | |
# fp8grad_transpose, stategrad_transpose = F.vectorwise_quant(grad_output_reshape, dim=0, quant_type='vector') | |
# fp8out_transpose = (fp8grad_transpose / 7) * stategrad_transpose | |
# fp8out_transpose = fp8out_transpose.view(grad_output.shape[0], grad_output.shape[1], grad_output.shape[2]) | |
# not supported by PyTorch. TODO: create work-around | |
if req_gradA: | |
grad_A = torch.matmul(fp8out, B.t().to(fp8out.dtype)).to(A.dtype) | |
if req_gradB: | |
if len(A.shape) == 3: | |
At = A.transpose(2, 1).contiguous() | |
else: | |
At = A.transpose(1, 0).contiguous() | |
cA, state = F.quantize(At.float(), code=ctx.fw_code) | |
fp8At = F.dequantize(cA, state).to(A.dtype) | |
grad_B = torch.matmul(fp8At.to(fp8out.dtype), fp8out).to(B.dtype) | |
return grad_A, grad_B, None, None, None, None, None | |
class SwitchBackBnb(torch.autograd.Function): | |
def forward(ctx, A, B, out=None, bias=None, state=MatmulLtState()): | |
# default to pytorch behavior if inputs are empty | |
ctx.is_empty = False | |
if prod(A.shape) == 0: | |
ctx.is_empty = True | |
ctx.A = A | |
ctx.B = B | |
ctx.bias = bias | |
if A.shape[-1] == B.shape[0]: | |
return torch.empty(A.shape[:-1]+B.shape[1:], dtype=A.dtype, device=A.device) | |
else: | |
return torch.empty(A.shape[:-1]+B.shape[:1], dtype=A.dtype, device=A.device) | |
# 1. Quantize A | |
# 2. Quantize B | |
# 3. Matmul | |
# 4. Mixed-precision decomposition matmul | |
# 5. Save state | |
formatB = state.formatB | |
input_shape = A.shape | |
if state.outlier_pool is None: | |
state.outlier_pool = GlobalOutlierPooler.get_instance() | |
# Cast A to fp16 | |
if A.dtype != torch.float16: | |
warnings.warn(f"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization") | |
# 1. Quantize A | |
if len(A.shape) == 3: | |
A = A.view(-1, A.shape[-1]).contiguous() | |
CA, CAt, SCA, SCAt, coo_tensorA = F.double_quant( | |
A.to(torch.float16), threshold=state.threshold | |
) | |
if state.threshold > 0.0 and coo_tensorA is not None: | |
if state.has_fp16_weights: | |
idx = torch.unique(coo_tensorA.colidx).long() | |
CA[:, idx] = 0 | |
CAt[:, idx] = 0 | |
subA = A[:, idx] | |
state.subB = B[:, idx].t().contiguous() | |
state.idx = idx | |
else: | |
if state.CxB is None: | |
# B in in 8-bit row-major, we can transform it back to 16-bit to extract outlier dimensions | |
# we also need to convert it to the turing/ampere format | |
state.CxB, state.SB = F.transform(state.CB, to_order=formatB) | |
else: | |
#print('A shape', A.shape) | |
if not state.has_fp16_weights and state.CxB is None: | |
state.CxB, state.SB = F.transform(state.CB, to_order=formatB) | |
subA = None | |
# 2. Quantize B | |
if state.has_fp16_weights: | |
#print('B shape', B.shape) | |
has_grad = True if (getattr(B, "grad", None) is not None) else False | |
is_transposed = not B.is_contiguous() and B.shape[0] == B.stride(1) | |
if is_transposed: | |
B = B.contiguous() | |
if (state.is_training and not has_grad) or state.CxB is None: | |
state.reset_grads() | |
( | |
CB, | |
state.CBt, | |
state.SCB, | |
state.SCBt, | |
coo_tensorB, | |
) = F.double_quant(B.to(torch.float16)) | |
state.CxB, state.SB = F.transform(CB, to_order=formatB) | |
else: | |
has_grad = False | |
if coo_tensorA is not None and not state.has_fp16_weights: | |
# extract outliers | |
outlier_idx = torch.unique(coo_tensorA.colidx) | |
state.idx = outlier_idx | |
# state.outlier_pool.add_outliers(outlier_idx, A.shape[-1]) | |
# if state.use_pool and state.outlier_pool.model_dim == A.shape[-1]: | |
# # do not use pool for 2nd FFN layer | |
# state.idx = state.outlier_pool.get_current_outlier_idx().to(A.device) | |
# else: | |
# state.idx = outlier_idx | |
outliers = F.extract_outliers(state.CxB, state.SB, state.idx.int()) | |
state.subB = ( | |
(outliers * state.SCB.view(-1, 1) / 127.0) | |
.t() | |
.contiguous() | |
.to(A.dtype) | |
) | |
CA[:, state.idx.long()] = 0 | |
CAt[:, state.idx.long()] = 0 | |
subA = A[:, state.idx.long()] | |
shapeB = state.SB[0] | |
if len(input_shape) == 3: | |
output_shape = (input_shape[0], input_shape[1], shapeB[0]) | |
else: | |
output_shape = (input_shape[0], shapeB[0]) | |
# 3. Matmul | |
C32A, SA = F.transform(CA, "col32") | |
out32, Sout32 = F.igemmlt(C32A, state.CxB, SA, state.SB) | |
# we apply the fused bias here | |
if bias is None or bias.dtype == torch.float16: | |
output = F.mm_dequant(out32, Sout32, SCA, state.SCB, bias=bias) | |
output = output.to(A.dtype) | |
else: # apply bias separately | |
output = F.mm_dequant(out32, Sout32, SCA, state.SCB, bias=None) | |
output = output.to(A.dtype).add_(bias) | |
# 4. Mixed-precision decomposition matmul | |
if coo_tensorA is not None and subA is not None: | |
output += torch.matmul(subA, state.subB) | |
# 5. Save state | |
ctx.state = state | |
ctx.formatB = formatB | |
ctx.grad_shape = input_shape | |
ctx.dtype_A, ctx.dtype_B, ctx.dtype_bias = A.dtype, B.dtype, None if bias is None else bias.dtype | |
if any(ctx.needs_input_grad[:2]): | |
ctx.tensors = (CAt, subA, A) | |
ctx.tensor_states = (SCAt, state.idx) | |
else: | |
ctx.tensors = [None, None, None] | |
ctx.tensor_states = (None, None) | |
ctx.save_for_backward(None, None) | |
clone_func = torch.clone if len(output_shape) == 3 else lambda x : x | |
return clone_func(output.view(output_shape)) | |
def backward(ctx, grad_output): | |
if ctx.is_empty: | |
bias_grad = (None if ctx.bias is None else torch.zeros_like(ctx.bias)) | |
return torch.zeros_like(ctx.A), torch.zeros_like(ctx.B), None, bias_grad, None | |
req_gradA, req_gradB, _, req_gradBias, _ = ctx.needs_input_grad | |
CAt, subA, A = ctx.tensors | |
SCAt, idx = ctx.tensor_states | |
formatB = ctx.formatB | |
state = ctx.state | |
grad_A = grad_B = grad_bias = None | |
if req_gradBias: | |
# compute grad_bias first before changing grad_output dtype | |
grad_bias = grad_output.sum(0, dtype=ctx.dtype_bias) | |
# Cast grad_output to fp16 | |
if len(grad_output.shape) == 3: | |
grad_output = grad_output.reshape( | |
-1, grad_output.shape[-1] | |
).contiguous() | |
Cgrad, Cgradt, SCgrad, SCgradt, coo_tensor = F.double_quant(grad_output.to(torch.float16)) | |
if req_gradB: | |
# print('back A shape', A.shape) | |
# print('grad output t shape', grad_output.t().shape) | |
grad_B = torch.matmul(grad_output.t(), A) | |
if req_gradA: | |
if state.CBt is not None: | |
C32grad, Sgrad = F.transform(Cgrad, "col32") | |
if state.CxBt is None: | |
state.CxBt, state.SBt = F.transform( | |
state.CBt, to_order=formatB, transpose=True | |
) | |
# print('back B shape', state.CxBt.shape) | |
# print('back grad shape', C32grad.shape) | |
gradA32, SgradA32 = F.igemmlt(C32grad, state.CxBt, Sgrad, state.SBt) | |
grad_A = F.mm_dequant(gradA32, SgradA32, SCgrad, state.SCBt).view(ctx.grad_shape).to(ctx.dtype_A) | |
elif state.CB is not None: | |
CB = state.CB.to(ctx.dtype_A, copy=True).mul_(state.SCB.unsqueeze(1).mul(1. / 127.0)) | |
grad_A = torch.matmul(grad_output, CB).view(ctx.grad_shape).to(ctx.dtype_A) | |
else: | |
raise Exception('State must contain either CBt or CB matrix for backward') | |
return grad_A, grad_B, None, grad_bias, None | |
def get_block_sizes(input_matrix, weight_matrix): | |
input_features = input_matrix.shape[-1] | |
output_features = (weight_matrix.shape[0] if weight_matrix.shape[1] == input_features else weight_matrix.shape[1]) | |
array = [4096, 2048, 1024, 512, 256, 128, 64, 0] | |
bsz, bsz2 = 1024, 1024 | |
for i, k in enumerate(array): | |
if input_features > array[i + 1]: | |
bsz = k | |
break | |
for i, k in enumerate(array): | |
if output_features > array[i + 1]: | |
bsz2 = k | |
break | |
return bsz, bsz2 | |
def matmul_fp8_global(A: tensor, B: tensor, fw_code: tensor, bw_code: tensor, out: tensor = None, bsz : int = -1, bsz2 : int = -1): | |
if bsz == -1 or bsz2 == -1: bsz, bsz2 = get_block_sizes(A, B) | |
return MatMulFP8Global.apply(A, B, out, fw_code, bw_code, bsz, bsz2) | |
def matmul_fp8_mixed(A: tensor, B: tensor, fw_code: tensor, bw_code: tensor, out: tensor = None, bsz : int = -1, bsz2 : int = -1): | |
if bsz == -1 or bsz2 == -1: bsz, bsz2 = get_block_sizes(A, B) | |
return MatMulFP8Mixed.apply(A, B, out, fw_code, bw_code, bsz, bsz2) | |
def switchback_bnb( | |
A: tensor, | |
B: tensor, | |
out: tensor = None, | |
state: MatmulLtState = None, | |
threshold=0.0, | |
bias=None | |
): | |
state = state or MatmulLtState() | |
if threshold > 0.0: | |
state.threshold = threshold | |
return SwitchBackBnb.apply(A, B, out, bias, state) | |