Spaces:
Running
Running
File size: 11,296 Bytes
5c263d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
# -------------------------------------------------------------------
# This source file is available under the terms of the
# Pimcore Open Core License (POCL)
# Full copyright and license information is available in
# LICENSE.md which is distributed with this source code.
#
# @copyright Copyright (c) Pimcore GmbH (https://www.pimcore.com)
# @license Pimcore Open Core License (POCL)
# -------------------------------------------------------------------
import os
import torch
#from .training_status import Status
#from .environment_variable_checker import EnvironmentVariableChecker
#from .training_manager import TrainingManager
#from .image_classification.image_classification_trainer import ImageClassificationTrainer
#from .image_classification.image_classification_parameters import ImageClassificationParameters, map_image_classification_training_parameters, ImageClassificationTrainingParameters
#from .text_classification.text_classification_trainer import TextClassificationTrainer
#from .text_classification.text_classification_parameters import TextClassificationParameters, map_text_classification_training_parameters, TextClassificationTrainingParameters
from fastapi import FastAPI, Depends, HTTPException, UploadFile, Form, File, status
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from pydantic import BaseModel
from typing import Annotated
import logging
from pathlib import Path
import tempfile
import sys
from transformers import pipeline
app = FastAPI(
title="Pimcore Local Inference Service",
description="This services allows HF inference provider compatible inference to models which are not available at HF inference providers.",
version="1.0.0"
)
#environmentVariableChecker = EnvironmentVariableChecker()
#environmentVariableChecker.validate_environment_variables()
logging.basicConfig(format='%(asctime)s %(levelname)-8s %(message)s')
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
class StreamToLogger(object):
def __init__(self, logger, log_level):
self.logger = logger
self.log_level = log_level
self.linebuf = ''
def write(self, buf):
for line in buf.rstrip().splitlines():
self.logger.log(self.log_level, line.rstrip())
def flush(self):
pass
sys.stdout = StreamToLogger(logger, logging.INFO)
sys.stderr = StreamToLogger(logger, logging.ERROR)
#classification_trainer: TrainingManager = TrainingManager()
class ResponseModel(BaseModel):
""" Default response model for endpoints. """
message: str
success: bool = True
# ===========================================
# Security Check
# ===========================================
# security = HTTPBearer()
# def verify_token(credentials: HTTPAuthorizationCredentials = Depends(security)):
# """Verify the token provided by the user."""
# token = environmentVariableChecker.get_authentication_token()
# if credentials.credentials != token:
# raise HTTPException(
# status_code=status.HTTP_401_UNAUTHORIZED,
# detail="Invalid token",
# headers={"WWW-Authenticate": "Bearer"},
# )
# return {"token": credentials.credentials}
# ===========================================
# Training Status Endpoints
# ===========================================
# @app.get("/get_training_status")
# async def get_task_status(token_data: dict = Depends(verify_token)):
# """ Get the status of the currently running training (if any). """
# status = classification_trainer.get_task_status()
# return {
# "project": status.get_project_name(),
# "progress": status.get_progress(),
# "task": status.get_task(),
# "status": status.get_status().value
# }
# @app.put("/stop_training")
# async def stop_task(token_data: dict = Depends(verify_token)):
# """ Stop the currently running training (if any). """
# try:
# status = classification_trainer.get_task_status()
# classification_trainer.stop_task()
# return ResponseModel(message=f"Training stopped for `{ status.get_project_name() }`")
# except Exception as e:
# raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
@app.get("/gpu_check")
async def gpu_check():
""" Check if a GPU is available """
gpu = 'GPU not available'
if torch.cuda.is_available():
gpu = 'GPU is available'
print("GPU is available")
else:
print("GPU is not available")
return {'success': True, 'gpu': gpu}
from fastapi import Body
from typing import Optional
class TranslationRequest(BaseModel):
inputs: str
parameters: Optional[dict] = None
@app.post(
"/translation/{model_name:path}/",
)
async def translation(
model_name: str,
body: TranslationRequest = Body(
...,
example={
"inputs": "I am a car",
"parameters": {
"repetition_penalty": 1.6,
}
}
)
):
"""
Execute translation tasks.
Args:
model_name (str): The HuggingFace model name to use for translation.
body (TranslationRequest): The request payload containing translation parameters.
Returns:
list: The translation result(s) as returned by the pipeline.
"""
try:
pipe = pipeline("translation", model=model_name)
except Exception as e:
logger.error(f"Failed to load model '{model_name}': {str(e)}")
raise HTTPException(
status_code=404,
detail=f"Model '{model_name}' could not be loaded: {str(e)}"
)
try:
result = pipe(body.inputs, **(body.parameters or {}))
except Exception as e:
logger.error(f"Inference failed for model '{model_name}': {str(e)}")
raise HTTPException(
status_code=500,
detail=f"Inference failed: {str(e)}"
)
return result
# ===========================================
# Fine-Tuning Image Classification
# ===========================================
# @app.post(
# "/training/image_classification",
# response_model=ResponseModel
# )
# async def image_classification(
# training_params: Annotated[ImageClassificationTrainingParameters, Depends(map_image_classification_training_parameters)],
# training_data_zip: Annotated[UploadFile, File(description="The ZIP file containing the training data, with a folder per class which contains images belonging to that class.")],
# token_data: dict = Depends(verify_token),
# project_name: str = Form(description="The name of the project. Will also be used as name of resulting model that will be created after fine tuning and as the name of the repository at huggingface."),
# source_model_name: str = Form('google/vit-base-patch16-224-in21k', description="The source model to be used as basis for fine tuning."),
# ):
# """
# Start fine tuning an image classification model with the provided data.
# """
# # check if training is running, if so then exit
# status = classification_trainer.get_task_status()
# if status.get_status() == Status.IN_PROGRESS or status.get_status() == Status.CANCELLING:
# raise HTTPException(status_code=405, detail="Training is already in progress.")
# # Ensure the uploaded file is a ZIP file
# if not training_data_zip.filename.endswith(".zip"):
# raise HTTPException(status_code=422, detail="Uploaded file is not a zip file.")
# try:
# # Create a temporary directory to extract the contents
# tmp_path = os.path.join(tempfile.gettempdir(), 'training_data')
# path = Path(tmp_path)
# path.mkdir(parents=True, exist_ok=True)
# contents = await training_data_zip.read()
# zip_path = os.path.join(tmp_path, 'image_classification_data.zip')
# with open(zip_path, 'wb') as temp_file:
# temp_file.write(contents)
# # prepare parameters
# parameters = ImageClassificationParameters(
# training_files_path=tmp_path,
# training_zip_file_path=zip_path,
# project_name=project_name,
# source_model_name=source_model_name,
# training_parameters=training_params
# )
# # start training
# await classification_trainer.start_training(ImageClassificationTrainer(), parameters)
# return ResponseModel(message="Training started.")
# except Exception as e:
# raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
# ===========================================
# Fine-Tuning Text Classification
# ===========================================
# @app.post(
# "/training/text_classification",
# response_model=ResponseModel
# )
# async def text_classificaiton(
# training_params: Annotated[TextClassificationTrainingParameters, Depends(map_text_classification_training_parameters)],
# training_data_csv: Annotated[UploadFile, File(description="The CSV file containing the training data, necessary columns `value` (text data) and `target` (classification).")],
# token_data: dict = Depends(verify_token),
# project_name: str = Form(description="The name of the project. Will also be used as name of resulting model that will be created after fine tuning and as the name of the repository at huggingface."),
# training_csv_limiter: str = Form(';', description="The delimiter used in the CSV file."),
# source_model_name: str = Form('distilbert/distilbert-base-uncased'),
# ):
# """Start fine tuning an text classification model with the provided data."""
# # check if training is running, if so then exit
# status = classification_trainer.get_task_status()
# if status.get_status() == Status.IN_PROGRESS or status.get_status() == Status.CANCELLING:
# raise HTTPException(status_code=405, detail="Training is already in progress")
# # Ensure the uploaded file is a CSV file
# if not training_data_csv.filename.endswith(".csv"):
# raise HTTPException(status_code=422, detail="Uploaded file is not a csv file.")
# try:
# # Create a temporary directory to extract the contents
# tmp_path = os.path.join(tempfile.gettempdir(), 'training_data')
# path = Path(tmp_path)
# path.mkdir(parents=True, exist_ok=True)
# contents = await training_data_csv.read()
# csv_path = os.path.join(tmp_path, 'data.csv')
# with open(csv_path, 'wb') as temp_file:
# temp_file.write(contents)
# # prepare parameters
# parameters = TextClassificationParameters(
# training_csv_file_path=csv_path,
# training_csv_limiter=training_csv_limiter,
# project_name=project_name,
# source_model_name=source_model_name,
# training_parameters=training_params
# )
# # start training
# await classification_trainer.start_training(TextClassificationTrainer(), parameters)
# return ResponseModel(message="Training started.")
# except Exception as e:
# raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
|