Spaces:
Running
Running
additional tasks
Browse files- src/classification.py +82 -0
- src/image_classification.py +82 -0
- src/main.py +114 -158
- src/text_to_image.py +56 -0
- src/translation_task.py +67 -0
src/classification.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
from pydantic import BaseModel
|
3 |
+
import logging
|
4 |
+
from fastapi import Request, HTTPException
|
5 |
+
import json
|
6 |
+
from typing import Optional
|
7 |
+
|
8 |
+
|
9 |
+
class ClassificationRequest(BaseModel):
|
10 |
+
inputs: str
|
11 |
+
parameters: Optional[dict] = None
|
12 |
+
|
13 |
+
class ClassificationTaskService:
|
14 |
+
|
15 |
+
__logger: logging.Logger
|
16 |
+
__task_name: str
|
17 |
+
|
18 |
+
def __init__(self, logger: logging.Logger, task_name: str):
|
19 |
+
self.__logger = logger
|
20 |
+
self.__task_name = task_name
|
21 |
+
|
22 |
+
async def get_classification_request(
|
23 |
+
self,
|
24 |
+
request: Request
|
25 |
+
) -> ClassificationRequest:
|
26 |
+
content_type = request.headers.get("content-type", "")
|
27 |
+
if content_type.startswith("application/json"):
|
28 |
+
data = await request.json()
|
29 |
+
return ClassificationRequest(**data)
|
30 |
+
if content_type.startswith("application/x-www-form-urlencoded"):
|
31 |
+
raw = await request.body()
|
32 |
+
try:
|
33 |
+
data = json.loads(raw)
|
34 |
+
return ClassificationRequest(**data)
|
35 |
+
except Exception:
|
36 |
+
try:
|
37 |
+
data = json.loads(raw.decode("utf-8"))
|
38 |
+
return ClassificationRequest(**data)
|
39 |
+
except Exception:
|
40 |
+
raise HTTPException(status_code=400, detail="Invalid request body")
|
41 |
+
raise HTTPException(status_code=400, detail="Unsupported content type")
|
42 |
+
|
43 |
+
|
44 |
+
async def classify(
|
45 |
+
self,
|
46 |
+
request: Request,
|
47 |
+
model_name: str
|
48 |
+
):
|
49 |
+
|
50 |
+
classificationRequest: ClassificationRequest = await self.get_classification_request(request)
|
51 |
+
|
52 |
+
try:
|
53 |
+
pipe = pipeline(self.__task_name, model=model_name)
|
54 |
+
except Exception as e:
|
55 |
+
self.__logger.error(f"Failed to load model '{model_name}': {str(e)}")
|
56 |
+
raise HTTPException(
|
57 |
+
status_code=404,
|
58 |
+
detail=f"Model '{model_name}' could not be loaded: {str(e)}"
|
59 |
+
)
|
60 |
+
|
61 |
+
try:
|
62 |
+
|
63 |
+
if self.__task_name == "zero-shot-image-classification" or self.__task_name == "zero-shot-classification":
|
64 |
+
candidate_labels = []
|
65 |
+
|
66 |
+
if classificationRequest.parameters:
|
67 |
+
candidate_labels = classificationRequest.parameters.get('candidate_labels', [])
|
68 |
+
if isinstance(candidate_labels, str):
|
69 |
+
candidate_labels = [label.strip() for label in candidate_labels.split(',')]
|
70 |
+
result = pipe(classificationRequest.inputs, candidate_labels=candidate_labels)
|
71 |
+
|
72 |
+
else: # pretrained classification
|
73 |
+
result = pipe(classificationRequest.inputs)
|
74 |
+
|
75 |
+
except Exception as e:
|
76 |
+
self.__logger.error(f"Inference failed for model '{model_name}': {str(e)}")
|
77 |
+
raise HTTPException(
|
78 |
+
status_code=500,
|
79 |
+
detail=f"Inference failed: {str(e)}"
|
80 |
+
)
|
81 |
+
|
82 |
+
return result
|
src/image_classification.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
from pydantic import BaseModel
|
3 |
+
import logging
|
4 |
+
from fastapi import Request, HTTPException
|
5 |
+
import json
|
6 |
+
from typing import Optional
|
7 |
+
|
8 |
+
|
9 |
+
class ImageClassificationRequest(BaseModel):
|
10 |
+
inputs: str
|
11 |
+
parameters: Optional[dict] = None
|
12 |
+
|
13 |
+
class ImageClassificationTaskService:
|
14 |
+
|
15 |
+
__logger: logging.Logger
|
16 |
+
__task_name: str
|
17 |
+
|
18 |
+
def __init__(self, logger: logging.Logger, task_name: str = "image-classification"):
|
19 |
+
self.__logger = logger
|
20 |
+
self.__task_name = task_name
|
21 |
+
|
22 |
+
async def get_image_classification_request(
|
23 |
+
self,
|
24 |
+
request: Request
|
25 |
+
) -> ImageClassificationRequest:
|
26 |
+
content_type = request.headers.get("content-type", "")
|
27 |
+
if content_type.startswith("application/json"):
|
28 |
+
data = await request.json()
|
29 |
+
return ImageClassificationRequest(**data)
|
30 |
+
if content_type.startswith("application/x-www-form-urlencoded"):
|
31 |
+
raw = await request.body()
|
32 |
+
try:
|
33 |
+
data = json.loads(raw)
|
34 |
+
return ImageClassificationRequest(**data)
|
35 |
+
except Exception:
|
36 |
+
try:
|
37 |
+
data = json.loads(raw.decode("utf-8"))
|
38 |
+
return ImageClassificationRequest(**data)
|
39 |
+
except Exception:
|
40 |
+
raise HTTPException(status_code=400, detail="Invalid request body")
|
41 |
+
raise HTTPException(status_code=400, detail="Unsupported content type")
|
42 |
+
|
43 |
+
|
44 |
+
async def classify(
|
45 |
+
self,
|
46 |
+
request: Request,
|
47 |
+
model_name: str
|
48 |
+
):
|
49 |
+
|
50 |
+
imageRequest: ImageClassificationRequest = await self.get_image_classification_request(request)
|
51 |
+
|
52 |
+
try:
|
53 |
+
pipe = pipeline(self.__task_name, model=model_name)
|
54 |
+
except Exception as e:
|
55 |
+
self.__logger.error(f"Failed to load model '{model_name}': {str(e)}")
|
56 |
+
raise HTTPException(
|
57 |
+
status_code=404,
|
58 |
+
detail=f"Model '{model_name}' could not be loaded: {str(e)}"
|
59 |
+
)
|
60 |
+
|
61 |
+
try:
|
62 |
+
|
63 |
+
if self.__task_name == "zero-shot-image-classification":
|
64 |
+
candidate_labels = []
|
65 |
+
|
66 |
+
if imageRequest.parameters:
|
67 |
+
candidate_labels = imageRequest.parameters.get('candidate_labels', [])
|
68 |
+
if isinstance(candidate_labels, str):
|
69 |
+
candidate_labels = [label.strip() for label in candidate_labels.split(',')]
|
70 |
+
result = pipe(imageRequest.inputs, candidate_labels=candidate_labels)
|
71 |
+
|
72 |
+
else: # image classification
|
73 |
+
result = pipe(imageRequest.inputs)
|
74 |
+
|
75 |
+
except Exception as e:
|
76 |
+
self.__logger.error(f"Inference failed for model '{model_name}': {str(e)}")
|
77 |
+
raise HTTPException(
|
78 |
+
status_code=500,
|
79 |
+
detail=f"Inference failed: {str(e)}"
|
80 |
+
)
|
81 |
+
|
82 |
+
return result
|
src/main.py
CHANGED
@@ -8,21 +8,15 @@
|
|
8 |
# @license Pimcore Open Core License (POCL)
|
9 |
# -------------------------------------------------------------------
|
10 |
|
11 |
-
import os
|
12 |
import torch
|
13 |
|
14 |
-
from fastapi import FastAPI, Path,
|
15 |
-
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
|
16 |
-
from pydantic import BaseModel
|
17 |
-
from typing import Annotated
|
18 |
-
import json
|
19 |
-
|
20 |
import logging
|
21 |
import sys
|
22 |
-
import base64
|
23 |
-
|
24 |
|
25 |
-
from
|
|
|
|
|
26 |
|
27 |
app = FastAPI(
|
28 |
title="Pimcore Local Inference Service",
|
@@ -51,14 +45,6 @@ class StreamToLogger(object):
|
|
51 |
sys.stdout = StreamToLogger(logger, logging.INFO)
|
52 |
sys.stderr = StreamToLogger(logger, logging.ERROR)
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
class ResponseModel(BaseModel):
|
57 |
-
""" Default response model for endpoints. """
|
58 |
-
message: str
|
59 |
-
success: bool = True
|
60 |
-
|
61 |
-
|
62 |
@app.get("/gpu_check")
|
63 |
async def gpu_check():
|
64 |
""" Check if a GPU is available """
|
@@ -73,41 +59,9 @@ async def gpu_check():
|
|
73 |
return {'success': True, 'gpu': gpu}
|
74 |
|
75 |
|
76 |
-
from typing import Optional
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
# =========================
|
81 |
# Translation Task
|
82 |
# =========================
|
83 |
-
|
84 |
-
class TranslationRequest(BaseModel):
|
85 |
-
inputs: str
|
86 |
-
parameters: Optional[dict] = None
|
87 |
-
options: Optional[dict] = None
|
88 |
-
|
89 |
-
async def get_translation_request(
|
90 |
-
request: Request
|
91 |
-
) -> TranslationRequest:
|
92 |
-
content_type = request.headers.get("content-type", "")
|
93 |
-
if content_type.startswith("application/json"):
|
94 |
-
data = await request.json()
|
95 |
-
return TranslationRequest(**data)
|
96 |
-
if content_type.startswith("application/x-www-form-urlencoded"):
|
97 |
-
raw = await request.body()
|
98 |
-
try:
|
99 |
-
data = json.loads(raw)
|
100 |
-
return TranslationRequest(**data)
|
101 |
-
except Exception:
|
102 |
-
try:
|
103 |
-
data = json.loads(raw.decode("utf-8"))
|
104 |
-
return TranslationRequest(**data)
|
105 |
-
except Exception:
|
106 |
-
raise HTTPException(status_code=400, detail="Invalid request body")
|
107 |
-
raise HTTPException(status_code=400, detail="Unsupported content type")
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
@app.post(
|
112 |
"/translation/{model_name:path}/",
|
113 |
openapi_extra={
|
@@ -138,60 +92,13 @@ async def translate(
|
|
138 |
list: The translation result(s) as returned by the pipeline.
|
139 |
"""
|
140 |
|
141 |
-
|
142 |
-
|
143 |
-
try:
|
144 |
-
pipe = pipeline("translation", model=model_name)
|
145 |
-
except Exception as e:
|
146 |
-
logger.error(f"Failed to load model '{model_name}': {str(e)}")
|
147 |
-
raise HTTPException(
|
148 |
-
status_code=404,
|
149 |
-
detail=f"Model '{model_name}' could not be loaded: {str(e)}"
|
150 |
-
)
|
151 |
-
|
152 |
-
try:
|
153 |
-
result = pipe(translationRequest.inputs, **(translationRequest.parameters or {}))
|
154 |
-
except Exception as e:
|
155 |
-
logger.error(f"Inference failed for model '{model_name}': {str(e)}")
|
156 |
-
raise HTTPException(
|
157 |
-
status_code=500,
|
158 |
-
detail=f"Inference failed: {str(e)}"
|
159 |
-
)
|
160 |
-
|
161 |
-
return result
|
162 |
|
163 |
|
164 |
# =========================
|
165 |
# Zero-Shot Image Classification Task
|
166 |
# =========================
|
167 |
-
|
168 |
-
|
169 |
-
class ZeroShotImageClassificationRequest(BaseModel):
|
170 |
-
inputs: str
|
171 |
-
parameters: Optional[dict] = None
|
172 |
-
|
173 |
-
async def get_zero_shot_image_classification_request(
|
174 |
-
request: Request
|
175 |
-
) -> ZeroShotImageClassificationRequest:
|
176 |
-
content_type = request.headers.get("content-type", "")
|
177 |
-
if content_type.startswith("application/json"):
|
178 |
-
data = await request.json()
|
179 |
-
return ZeroShotImageClassificationRequest(**data)
|
180 |
-
if content_type.startswith("application/x-www-form-urlencoded"):
|
181 |
-
raw = await request.body()
|
182 |
-
try:
|
183 |
-
data = json.loads(raw)
|
184 |
-
return ZeroShotImageClassificationRequest(**data)
|
185 |
-
except Exception:
|
186 |
-
try:
|
187 |
-
data = json.loads(raw.decode("utf-8"))
|
188 |
-
return ZeroShotImageClassificationRequest(**data)
|
189 |
-
except Exception:
|
190 |
-
raise HTTPException(status_code=400, detail="Invalid request body")
|
191 |
-
raise HTTPException(status_code=400, detail="Unsupported content type")
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
@app.post(
|
196 |
"/zero-shot-image-classification/{model_name:path}/",
|
197 |
openapi_extra={
|
@@ -222,58 +129,126 @@ async def zero_shot_image_classification(
|
|
222 |
list: The classification result(s) as returned by the pipeline.
|
223 |
"""
|
224 |
|
225 |
-
|
|
|
|
|
226 |
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
candidate_labels = zeroShotRequest.parameters.get('candidate_labels', [])
|
240 |
-
if isinstance(candidate_labels, str):
|
241 |
-
candidate_labels = [label.strip() for label in candidate_labels.split(',')]
|
242 |
-
result = pipe(zeroShotRequest.inputs, candidate_labels=candidate_labels)
|
243 |
-
except Exception as e:
|
244 |
-
logger.error(f"Inference failed for model '{model_name}': {str(e)}")
|
245 |
-
raise HTTPException(
|
246 |
-
status_code=500,
|
247 |
-
detail=f"Inference failed: {str(e)}"
|
248 |
-
)
|
249 |
|
250 |
-
|
|
|
251 |
|
252 |
|
253 |
|
254 |
# =========================
|
255 |
-
#
|
256 |
# =========================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
|
|
|
|
|
|
|
258 |
|
259 |
-
|
260 |
-
request
|
261 |
-
) -> str:
|
262 |
-
content_type = request.headers.get("content-type", "")
|
263 |
-
if content_type.startswith("multipart/form-data"):
|
264 |
-
form = await request.form()
|
265 |
-
image = form.get("image")
|
266 |
-
if image:
|
267 |
-
image_bytes = await image.read()
|
268 |
-
return base64.b64encode(image_bytes).decode("utf-8")
|
269 |
-
if content_type.startswith("image/"):
|
270 |
-
image_bytes = await request.body()
|
271 |
-
return base64.b64encode(image_bytes).decode("utf-8")
|
272 |
|
273 |
-
raise HTTPException(status_code=400, detail="Unsupported content type")
|
274 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
275 |
|
276 |
|
|
|
|
|
|
|
|
|
|
|
|
|
277 |
@app.post(
|
278 |
"/image-to-text/{model_name:path}/",
|
279 |
openapi_extra={
|
@@ -311,24 +286,5 @@ async def image_to_text(
|
|
311 |
list: The generated text as returned by the pipeline.
|
312 |
"""
|
313 |
|
314 |
-
|
315 |
-
|
316 |
-
try:
|
317 |
-
pipe = pipeline("image-to-text", model=model_name, use_fast=True)
|
318 |
-
except Exception as e:
|
319 |
-
logger.error(f"Failed to load model '{model_name}': {str(e)}")
|
320 |
-
raise HTTPException(
|
321 |
-
status_code=404,
|
322 |
-
detail=f"Model '{model_name}' could not be loaded: {str(e)}"
|
323 |
-
)
|
324 |
-
|
325 |
-
try:
|
326 |
-
result = pipe(encoded_image)
|
327 |
-
except Exception as e:
|
328 |
-
logger.error(f"Inference failed for model '{model_name}': {str(e)}")
|
329 |
-
raise HTTPException(
|
330 |
-
status_code=500,
|
331 |
-
detail=f"Inference failed: {str(e)}"
|
332 |
-
)
|
333 |
-
|
334 |
-
return result
|
|
|
8 |
# @license Pimcore Open Core License (POCL)
|
9 |
# -------------------------------------------------------------------
|
10 |
|
|
|
11 |
import torch
|
12 |
|
13 |
+
from fastapi import FastAPI, Path, Request
|
|
|
|
|
|
|
|
|
|
|
14 |
import logging
|
15 |
import sys
|
|
|
|
|
16 |
|
17 |
+
from .translation_task import TranslationTaskService
|
18 |
+
from .classification import ClassificationTaskService
|
19 |
+
from .text_to_image import TextToImageTaskService
|
20 |
|
21 |
app = FastAPI(
|
22 |
title="Pimcore Local Inference Service",
|
|
|
45 |
sys.stdout = StreamToLogger(logger, logging.INFO)
|
46 |
sys.stderr = StreamToLogger(logger, logging.ERROR)
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
@app.get("/gpu_check")
|
49 |
async def gpu_check():
|
50 |
""" Check if a GPU is available """
|
|
|
59 |
return {'success': True, 'gpu': gpu}
|
60 |
|
61 |
|
|
|
|
|
|
|
|
|
62 |
# =========================
|
63 |
# Translation Task
|
64 |
# =========================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
@app.post(
|
66 |
"/translation/{model_name:path}/",
|
67 |
openapi_extra={
|
|
|
92 |
list: The translation result(s) as returned by the pipeline.
|
93 |
"""
|
94 |
|
95 |
+
translationTaskService = TranslationTaskService(logger)
|
96 |
+
return await translationTaskService.translate(request, model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
|
99 |
# =========================
|
100 |
# Zero-Shot Image Classification Task
|
101 |
# =========================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
@app.post(
|
103 |
"/zero-shot-image-classification/{model_name:path}/",
|
104 |
openapi_extra={
|
|
|
129 |
list: The classification result(s) as returned by the pipeline.
|
130 |
"""
|
131 |
|
132 |
+
zeroShotTask = ClassificationTaskService(logger, 'zero-shot-image-classification')
|
133 |
+
return await zeroShotTask.classify(request, model_name)
|
134 |
+
|
135 |
|
136 |
+
# =========================
|
137 |
+
# Image Classification Task
|
138 |
+
# =========================
|
139 |
+
@app.post(
|
140 |
+
"/image-classification/{model_name:path}/",
|
141 |
+
openapi_extra={
|
142 |
+
"requestBody": {
|
143 |
+
"content": {
|
144 |
+
"application/json": {
|
145 |
+
"example": {
|
146 |
+
"inputs": "base64_encoded_image_string"
|
147 |
+
}
|
148 |
+
}
|
149 |
+
}
|
150 |
+
}
|
151 |
+
}
|
152 |
+
)
|
153 |
+
async def image_classification(
|
154 |
+
request: Request,
|
155 |
+
model_name: str = Path(
|
156 |
+
...,
|
157 |
+
description="The name of the image classification model (e.g., pimcore/car-countries-classification)",
|
158 |
+
example="pimcore/car-countries-classification"
|
159 |
+
)
|
160 |
+
):
|
161 |
+
"""
|
162 |
+
Execute image classification tasks.
|
163 |
|
164 |
+
Returns:
|
165 |
+
list: The classification result(s) as returned by the pipeline.
|
166 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
|
168 |
+
imageTask = ClassificationTaskService(logger, 'image-classification')
|
169 |
+
return await imageTask.classify(request, model_name)
|
170 |
|
171 |
|
172 |
|
173 |
# =========================
|
174 |
+
# Zero-Shot Text Classification Task
|
175 |
# =========================
|
176 |
+
@app.post(
|
177 |
+
"/zero-shot-text-classification/{model_name:path}/",
|
178 |
+
openapi_extra={
|
179 |
+
"requestBody": {
|
180 |
+
"content": {
|
181 |
+
"application/json": {
|
182 |
+
"example": {
|
183 |
+
"inputs": "text to classify",
|
184 |
+
"parameters": {"candidate_labels": "green, yellow, blue, white, silver"}
|
185 |
+
}
|
186 |
+
}
|
187 |
+
}
|
188 |
+
}
|
189 |
+
}
|
190 |
+
)
|
191 |
+
async def zero_shot_text_classification(
|
192 |
+
request: Request,
|
193 |
+
model_name: str = Path(
|
194 |
+
...,
|
195 |
+
description="The name of the zero-shot text classification model (e.g., facebook/bart-large-mnli)",
|
196 |
+
example="facebook/bart-large-mnli"
|
197 |
+
)
|
198 |
+
):
|
199 |
+
"""
|
200 |
+
Execute zero-shot text classification tasks.
|
201 |
|
202 |
+
Returns:
|
203 |
+
list: The classification result(s) as returned by the pipeline.
|
204 |
+
"""
|
205 |
|
206 |
+
zeroShotTask = ClassificationTaskService(logger, 'zero-shot-classification')
|
207 |
+
return await zeroShotTask.classify(request, model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
|
|
|
209 |
|
210 |
+
# =========================
|
211 |
+
# Text Classification Task
|
212 |
+
# =========================
|
213 |
+
@app.post(
|
214 |
+
"/text-classification/{model_name:path}/",
|
215 |
+
openapi_extra={
|
216 |
+
"requestBody": {
|
217 |
+
"content": {
|
218 |
+
"application/json": {
|
219 |
+
"example": {
|
220 |
+
"inputs": "text to classify"
|
221 |
+
}
|
222 |
+
}
|
223 |
+
}
|
224 |
+
}
|
225 |
+
}
|
226 |
+
)
|
227 |
+
async def text_classification(
|
228 |
+
request: Request,
|
229 |
+
model_name: str = Path(
|
230 |
+
...,
|
231 |
+
description="The name of the text classification model (e.g., pimcore/car-class-classification)",
|
232 |
+
example="pimcore/car-class-classification"
|
233 |
+
)
|
234 |
+
):
|
235 |
+
"""
|
236 |
+
Execute text classification tasks.
|
237 |
+
|
238 |
+
Returns:
|
239 |
+
list: The classification result(s) as returned by the pipeline.
|
240 |
+
"""
|
241 |
+
|
242 |
+
textTask = ClassificationTaskService(logger, 'text-classification')
|
243 |
+
return await textTask.classify(request, model_name)
|
244 |
|
245 |
|
246 |
+
|
247 |
+
|
248 |
+
|
249 |
+
# =========================
|
250 |
+
# Image to Text Task
|
251 |
+
# =========================
|
252 |
@app.post(
|
253 |
"/image-to-text/{model_name:path}/",
|
254 |
openapi_extra={
|
|
|
286 |
list: The generated text as returned by the pipeline.
|
287 |
"""
|
288 |
|
289 |
+
imageToTextTask = TextToImageTaskService(logger)
|
290 |
+
return await imageToTextTask.extract(request, model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/text_to_image.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
import logging
|
3 |
+
from fastapi import Request, HTTPException
|
4 |
+
import base64
|
5 |
+
|
6 |
+
|
7 |
+
class TextToImageTaskService:
|
8 |
+
|
9 |
+
__logger: logging.Logger
|
10 |
+
|
11 |
+
def __init__(self, logger: logging.Logger):
|
12 |
+
self.__logger = logger
|
13 |
+
|
14 |
+
async def get_encoded_image(
|
15 |
+
self,
|
16 |
+
request: Request
|
17 |
+
) -> str:
|
18 |
+
content_type = request.headers.get("content-type", "")
|
19 |
+
if content_type.startswith("multipart/form-data"):
|
20 |
+
form = await request.form()
|
21 |
+
image = form.get("image")
|
22 |
+
if image:
|
23 |
+
image_bytes = await image.read()
|
24 |
+
return base64.b64encode(image_bytes).decode("utf-8")
|
25 |
+
if content_type.startswith("image/"):
|
26 |
+
image_bytes = await request.body()
|
27 |
+
return base64.b64encode(image_bytes).decode("utf-8")
|
28 |
+
|
29 |
+
raise HTTPException(status_code=400, detail="Unsupported content type")
|
30 |
+
|
31 |
+
async def extract(
|
32 |
+
self,
|
33 |
+
request: Request,
|
34 |
+
model_name: str
|
35 |
+
):
|
36 |
+
encoded_image = await self.get_encoded_image(request)
|
37 |
+
|
38 |
+
try:
|
39 |
+
pipe = pipeline("image-to-text", model=model_name, use_fast=True)
|
40 |
+
except Exception as e:
|
41 |
+
self.__logger.error(f"Failed to load model '{model_name}': {str(e)}")
|
42 |
+
raise HTTPException(
|
43 |
+
status_code=404,
|
44 |
+
detail=f"Model '{model_name}' could not be loaded: {str(e)}"
|
45 |
+
)
|
46 |
+
|
47 |
+
try:
|
48 |
+
result = pipe(encoded_image)
|
49 |
+
except Exception as e:
|
50 |
+
self.__logger.error(f"Inference failed for model '{model_name}': {str(e)}")
|
51 |
+
raise HTTPException(
|
52 |
+
status_code=500,
|
53 |
+
detail=f"Inference failed: {str(e)}"
|
54 |
+
)
|
55 |
+
|
56 |
+
return result
|
src/translation_task.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
from pydantic import BaseModel
|
3 |
+
import logging
|
4 |
+
from fastapi import Request, HTTPException
|
5 |
+
import json
|
6 |
+
from typing import Optional
|
7 |
+
|
8 |
+
class TranslationRequest(BaseModel):
|
9 |
+
inputs: str
|
10 |
+
parameters: Optional[dict] = None
|
11 |
+
options: Optional[dict] = None
|
12 |
+
|
13 |
+
class TranslationTaskService:
|
14 |
+
|
15 |
+
__logger: logging.Logger
|
16 |
+
|
17 |
+
def __init__(self, logger: logging.Logger):
|
18 |
+
self.__logger = logger
|
19 |
+
|
20 |
+
async def get_translation_request(
|
21 |
+
self,
|
22 |
+
request: Request
|
23 |
+
) -> TranslationRequest:
|
24 |
+
content_type = request.headers.get("content-type", "")
|
25 |
+
if content_type.startswith("application/json"):
|
26 |
+
data = await request.json()
|
27 |
+
return TranslationRequest(**data)
|
28 |
+
if content_type.startswith("application/x-www-form-urlencoded"):
|
29 |
+
raw = await request.body()
|
30 |
+
try:
|
31 |
+
data = json.loads(raw)
|
32 |
+
return TranslationRequest(**data)
|
33 |
+
except Exception:
|
34 |
+
try:
|
35 |
+
data = json.loads(raw.decode("utf-8"))
|
36 |
+
return TranslationRequest(**data)
|
37 |
+
except Exception:
|
38 |
+
raise HTTPException(status_code=400, detail="Invalid request body")
|
39 |
+
raise HTTPException(status_code=400, detail="Unsupported content type")
|
40 |
+
|
41 |
+
|
42 |
+
async def translate(
|
43 |
+
self,
|
44 |
+
request: Request,
|
45 |
+
model_name: str
|
46 |
+
):
|
47 |
+
|
48 |
+
translationRequest: TranslationRequest = await self.get_translation_request(request)
|
49 |
+
|
50 |
+
try:
|
51 |
+
pipe = pipeline("translation", model=model_name)
|
52 |
+
except Exception as e:
|
53 |
+
self.__logger.error(f"Failed to load model '{model_name}': {str(e)}")
|
54 |
+
raise HTTPException(
|
55 |
+
status_code=404,
|
56 |
+
detail=f"Model '{model_name}' could not be loaded: {str(e)}"
|
57 |
+
)
|
58 |
+
|
59 |
+
try:
|
60 |
+
result = pipe(translationRequest.inputs, **(translationRequest.parameters or {}))
|
61 |
+
return result
|
62 |
+
except Exception as e:
|
63 |
+
self.__logger.error(f"Inference failed for model '{model_name}': {str(e)}")
|
64 |
+
raise HTTPException(
|
65 |
+
status_code=500,
|
66 |
+
detail=f"Inference failed: {str(e)}"
|
67 |
+
)
|