Spaces:
Running
Running
additional tasks
Browse files- requirements.txt +1 -0
- src/main.py +223 -192
requirements.txt
CHANGED
@@ -5,4 +5,5 @@ transformers
|
|
5 |
sentencepiece
|
6 |
sacremoses
|
7 |
torch
|
|
|
8 |
# Optional dependencies for specific features
|
|
|
5 |
sentencepiece
|
6 |
sacremoses
|
7 |
torch
|
8 |
+
pillow
|
9 |
# Optional dependencies for specific features
|
src/main.py
CHANGED
@@ -11,26 +11,15 @@
|
|
11 |
import os
|
12 |
import torch
|
13 |
|
14 |
-
|
15 |
-
#from .environment_variable_checker import EnvironmentVariableChecker
|
16 |
-
|
17 |
-
#from .training_manager import TrainingManager
|
18 |
-
#from .image_classification.image_classification_trainer import ImageClassificationTrainer
|
19 |
-
#from .image_classification.image_classification_parameters import ImageClassificationParameters, map_image_classification_training_parameters, ImageClassificationTrainingParameters
|
20 |
-
#from .text_classification.text_classification_trainer import TextClassificationTrainer
|
21 |
-
#from .text_classification.text_classification_parameters import TextClassificationParameters, map_text_classification_training_parameters, TextClassificationTrainingParameters
|
22 |
-
|
23 |
-
|
24 |
-
from fastapi import FastAPI, Depends, HTTPException, UploadFile, Form, File, status
|
25 |
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
|
26 |
from pydantic import BaseModel
|
27 |
from typing import Annotated
|
28 |
-
|
29 |
|
30 |
import logging
|
31 |
-
from pathlib import Path
|
32 |
-
import tempfile
|
33 |
import sys
|
|
|
34 |
|
35 |
|
36 |
from transformers import pipeline
|
@@ -41,9 +30,6 @@ app = FastAPI(
|
|
41 |
version="1.0.0"
|
42 |
)
|
43 |
|
44 |
-
#environmentVariableChecker = EnvironmentVariableChecker()
|
45 |
-
#environmentVariableChecker.validate_environment_variables()
|
46 |
-
|
47 |
logging.basicConfig(format='%(asctime)s %(levelname)-8s %(message)s')
|
48 |
logger = logging.getLogger(__name__)
|
49 |
logger.setLevel(logging.DEBUG)
|
@@ -65,7 +51,6 @@ class StreamToLogger(object):
|
|
65 |
sys.stdout = StreamToLogger(logger, logging.INFO)
|
66 |
sys.stderr = StreamToLogger(logger, logging.ERROR)
|
67 |
|
68 |
-
#classification_trainer: TrainingManager = TrainingManager()
|
69 |
|
70 |
|
71 |
class ResponseModel(BaseModel):
|
@@ -74,51 +59,6 @@ class ResponseModel(BaseModel):
|
|
74 |
success: bool = True
|
75 |
|
76 |
|
77 |
-
# ===========================================
|
78 |
-
# Security Check
|
79 |
-
# ===========================================
|
80 |
-
|
81 |
-
# security = HTTPBearer()
|
82 |
-
# def verify_token(credentials: HTTPAuthorizationCredentials = Depends(security)):
|
83 |
-
# """Verify the token provided by the user."""
|
84 |
-
|
85 |
-
# token = environmentVariableChecker.get_authentication_token()
|
86 |
-
|
87 |
-
# if credentials.credentials != token:
|
88 |
-
# raise HTTPException(
|
89 |
-
# status_code=status.HTTP_401_UNAUTHORIZED,
|
90 |
-
# detail="Invalid token",
|
91 |
-
# headers={"WWW-Authenticate": "Bearer"},
|
92 |
-
# )
|
93 |
-
# return {"token": credentials.credentials}
|
94 |
-
|
95 |
-
|
96 |
-
# ===========================================
|
97 |
-
# Training Status Endpoints
|
98 |
-
# ===========================================
|
99 |
-
|
100 |
-
# @app.get("/get_training_status")
|
101 |
-
# async def get_task_status(token_data: dict = Depends(verify_token)):
|
102 |
-
# """ Get the status of the currently running training (if any). """
|
103 |
-
# status = classification_trainer.get_task_status()
|
104 |
-
# return {
|
105 |
-
# "project": status.get_project_name(),
|
106 |
-
# "progress": status.get_progress(),
|
107 |
-
# "task": status.get_task(),
|
108 |
-
# "status": status.get_status().value
|
109 |
-
# }
|
110 |
-
|
111 |
-
# @app.put("/stop_training")
|
112 |
-
# async def stop_task(token_data: dict = Depends(verify_token)):
|
113 |
-
# """ Stop the currently running training (if any). """
|
114 |
-
# try:
|
115 |
-
# status = classification_trainer.get_task_status()
|
116 |
-
# classification_trainer.stop_task()
|
117 |
-
# return ResponseModel(message=f"Training stopped for `{ status.get_project_name() }`")
|
118 |
-
# except Exception as e:
|
119 |
-
# raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
|
120 |
-
|
121 |
-
|
122 |
@app.get("/gpu_check")
|
123 |
async def gpu_check():
|
124 |
""" Check if a GPU is available """
|
@@ -133,39 +73,73 @@ async def gpu_check():
|
|
133 |
return {'success': True, 'gpu': gpu}
|
134 |
|
135 |
|
136 |
-
from fastapi import Body
|
137 |
from typing import Optional
|
138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
class TranslationRequest(BaseModel):
|
140 |
inputs: str
|
141 |
parameters: Optional[dict] = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
@app.post(
|
144 |
"/translation/{model_name:path}/",
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
}
|
155 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
)
|
157 |
-
):
|
158 |
"""
|
159 |
Execute translation tasks.
|
160 |
|
161 |
-
Args:
|
162 |
-
model_name (str): The HuggingFace model name to use for translation.
|
163 |
-
body (TranslationRequest): The request payload containing translation parameters.
|
164 |
-
|
165 |
Returns:
|
166 |
list: The translation result(s) as returned by the pipeline.
|
167 |
"""
|
168 |
|
|
|
|
|
169 |
try:
|
170 |
pipe = pipeline("translation", model=model_name)
|
171 |
except Exception as e:
|
@@ -176,7 +150,96 @@ async def translation(
|
|
176 |
)
|
177 |
|
178 |
try:
|
179 |
-
result = pipe(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
except Exception as e:
|
181 |
logger.error(f"Inference failed for model '{model_name}': {str(e)}")
|
182 |
raise HTTPException(
|
@@ -187,117 +250,85 @@ async def translation(
|
|
187 |
return result
|
188 |
|
189 |
|
190 |
-
# ===========================================
|
191 |
-
# Fine-Tuning Image Classification
|
192 |
-
# ===========================================
|
193 |
-
|
194 |
-
# @app.post(
|
195 |
-
# "/training/image_classification",
|
196 |
-
# response_model=ResponseModel
|
197 |
-
# )
|
198 |
-
# async def image_classification(
|
199 |
-
# training_params: Annotated[ImageClassificationTrainingParameters, Depends(map_image_classification_training_parameters)],
|
200 |
-
# training_data_zip: Annotated[UploadFile, File(description="The ZIP file containing the training data, with a folder per class which contains images belonging to that class.")],
|
201 |
-
# token_data: dict = Depends(verify_token),
|
202 |
-
# project_name: str = Form(description="The name of the project. Will also be used as name of resulting model that will be created after fine tuning and as the name of the repository at huggingface."),
|
203 |
-
# source_model_name: str = Form('google/vit-base-patch16-224-in21k', description="The source model to be used as basis for fine tuning."),
|
204 |
-
# ):
|
205 |
-
# """
|
206 |
-
# Start fine tuning an image classification model with the provided data.
|
207 |
-
# """
|
208 |
-
|
209 |
-
# # check if training is running, if so then exit
|
210 |
-
# status = classification_trainer.get_task_status()
|
211 |
-
# if status.get_status() == Status.IN_PROGRESS or status.get_status() == Status.CANCELLING:
|
212 |
-
# raise HTTPException(status_code=405, detail="Training is already in progress.")
|
213 |
-
|
214 |
-
# # Ensure the uploaded file is a ZIP file
|
215 |
-
# if not training_data_zip.filename.endswith(".zip"):
|
216 |
-
# raise HTTPException(status_code=422, detail="Uploaded file is not a zip file.")
|
217 |
-
|
218 |
-
# try:
|
219 |
-
# # Create a temporary directory to extract the contents
|
220 |
-
# tmp_path = os.path.join(tempfile.gettempdir(), 'training_data')
|
221 |
-
# path = Path(tmp_path)
|
222 |
-
# path.mkdir(parents=True, exist_ok=True)
|
223 |
-
|
224 |
-
# contents = await training_data_zip.read()
|
225 |
-
# zip_path = os.path.join(tmp_path, 'image_classification_data.zip')
|
226 |
-
# with open(zip_path, 'wb') as temp_file:
|
227 |
-
# temp_file.write(contents)
|
228 |
-
|
229 |
-
# # prepare parameters
|
230 |
-
# parameters = ImageClassificationParameters(
|
231 |
-
# training_files_path=tmp_path,
|
232 |
-
# training_zip_file_path=zip_path,
|
233 |
-
# project_name=project_name,
|
234 |
-
# source_model_name=source_model_name,
|
235 |
-
# training_parameters=training_params
|
236 |
-
# )
|
237 |
-
|
238 |
-
# # start training
|
239 |
-
# await classification_trainer.start_training(ImageClassificationTrainer(), parameters)
|
240 |
-
|
241 |
-
# return ResponseModel(message="Training started.")
|
242 |
-
|
243 |
-
# except Exception as e:
|
244 |
-
# raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
# ===========================================
|
250 |
-
# Fine-Tuning Text Classification
|
251 |
-
# ===========================================
|
252 |
-
|
253 |
-
# @app.post(
|
254 |
-
# "/training/text_classification",
|
255 |
-
# response_model=ResponseModel
|
256 |
-
# )
|
257 |
-
# async def text_classificaiton(
|
258 |
-
# training_params: Annotated[TextClassificationTrainingParameters, Depends(map_text_classification_training_parameters)],
|
259 |
-
# training_data_csv: Annotated[UploadFile, File(description="The CSV file containing the training data, necessary columns `value` (text data) and `target` (classification).")],
|
260 |
-
# token_data: dict = Depends(verify_token),
|
261 |
-
# project_name: str = Form(description="The name of the project. Will also be used as name of resulting model that will be created after fine tuning and as the name of the repository at huggingface."),
|
262 |
-
# training_csv_limiter: str = Form(';', description="The delimiter used in the CSV file."),
|
263 |
-
# source_model_name: str = Form('distilbert/distilbert-base-uncased'),
|
264 |
-
# ):
|
265 |
-
# """Start fine tuning an text classification model with the provided data."""
|
266 |
-
|
267 |
-
# # check if training is running, if so then exit
|
268 |
-
# status = classification_trainer.get_task_status()
|
269 |
-
# if status.get_status() == Status.IN_PROGRESS or status.get_status() == Status.CANCELLING:
|
270 |
-
# raise HTTPException(status_code=405, detail="Training is already in progress")
|
271 |
-
|
272 |
-
# # Ensure the uploaded file is a CSV file
|
273 |
-
# if not training_data_csv.filename.endswith(".csv"):
|
274 |
-
# raise HTTPException(status_code=422, detail="Uploaded file is not a csv file.")
|
275 |
-
|
276 |
-
# try:
|
277 |
-
# # Create a temporary directory to extract the contents
|
278 |
-
# tmp_path = os.path.join(tempfile.gettempdir(), 'training_data')
|
279 |
-
# path = Path(tmp_path)
|
280 |
-
# path.mkdir(parents=True, exist_ok=True)
|
281 |
-
|
282 |
-
# contents = await training_data_csv.read()
|
283 |
-
# csv_path = os.path.join(tmp_path, 'data.csv')
|
284 |
-
# with open(csv_path, 'wb') as temp_file:
|
285 |
-
# temp_file.write(contents)
|
286 |
-
|
287 |
-
# # prepare parameters
|
288 |
-
# parameters = TextClassificationParameters(
|
289 |
-
# training_csv_file_path=csv_path,
|
290 |
-
# training_csv_limiter=training_csv_limiter,
|
291 |
-
# project_name=project_name,
|
292 |
-
# source_model_name=source_model_name,
|
293 |
-
# training_parameters=training_params
|
294 |
-
# )
|
295 |
-
|
296 |
-
# # start training
|
297 |
-
# await classification_trainer.start_training(TextClassificationTrainer(), parameters)
|
298 |
-
|
299 |
-
# return ResponseModel(message="Training started.")
|
300 |
-
|
301 |
-
# except Exception as e:
|
302 |
-
# raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
|
303 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
import os
|
12 |
import torch
|
13 |
|
14 |
+
from fastapi import FastAPI, Path, Depends, HTTPException, UploadFile, Form, File, status, Request
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
|
16 |
from pydantic import BaseModel
|
17 |
from typing import Annotated
|
18 |
+
import json
|
19 |
|
20 |
import logging
|
|
|
|
|
21 |
import sys
|
22 |
+
import base64
|
23 |
|
24 |
|
25 |
from transformers import pipeline
|
|
|
30 |
version="1.0.0"
|
31 |
)
|
32 |
|
|
|
|
|
|
|
33 |
logging.basicConfig(format='%(asctime)s %(levelname)-8s %(message)s')
|
34 |
logger = logging.getLogger(__name__)
|
35 |
logger.setLevel(logging.DEBUG)
|
|
|
51 |
sys.stdout = StreamToLogger(logger, logging.INFO)
|
52 |
sys.stderr = StreamToLogger(logger, logging.ERROR)
|
53 |
|
|
|
54 |
|
55 |
|
56 |
class ResponseModel(BaseModel):
|
|
|
59 |
success: bool = True
|
60 |
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
@app.get("/gpu_check")
|
63 |
async def gpu_check():
|
64 |
""" Check if a GPU is available """
|
|
|
73 |
return {'success': True, 'gpu': gpu}
|
74 |
|
75 |
|
|
|
76 |
from typing import Optional
|
77 |
|
78 |
+
|
79 |
+
|
80 |
+
# =========================
|
81 |
+
# Translation Task
|
82 |
+
# =========================
|
83 |
+
|
84 |
class TranslationRequest(BaseModel):
|
85 |
inputs: str
|
86 |
parameters: Optional[dict] = None
|
87 |
+
options: Optional[dict] = None
|
88 |
+
|
89 |
+
async def get_translation_request(
|
90 |
+
request: Request
|
91 |
+
) -> TranslationRequest:
|
92 |
+
content_type = request.headers.get("content-type", "")
|
93 |
+
if content_type.startswith("application/json"):
|
94 |
+
data = await request.json()
|
95 |
+
return TranslationRequest(**data)
|
96 |
+
if content_type.startswith("application/x-www-form-urlencoded"):
|
97 |
+
raw = await request.body()
|
98 |
+
try:
|
99 |
+
data = json.loads(raw)
|
100 |
+
return TranslationRequest(**data)
|
101 |
+
except Exception:
|
102 |
+
try:
|
103 |
+
data = json.loads(raw.decode("utf-8"))
|
104 |
+
return TranslationRequest(**data)
|
105 |
+
except Exception:
|
106 |
+
raise HTTPException(status_code=400, detail="Invalid request body")
|
107 |
+
raise HTTPException(status_code=400, detail="Unsupported content type")
|
108 |
+
|
109 |
+
|
110 |
|
111 |
@app.post(
|
112 |
"/translation/{model_name:path}/",
|
113 |
+
openapi_extra={
|
114 |
+
"requestBody": {
|
115 |
+
"content": {
|
116 |
+
"application/json": {
|
117 |
+
"example": {
|
118 |
+
"inputs": "Hello, world! foo bar",
|
119 |
+
"parameters": {"repetition_penalty": 1.6}
|
120 |
+
}
|
121 |
+
}
|
122 |
}
|
123 |
}
|
124 |
+
}
|
125 |
+
)
|
126 |
+
async def translate(
|
127 |
+
request: Request,
|
128 |
+
model_name: str = Path(
|
129 |
+
...,
|
130 |
+
description="The name of the translation model (e.g. Helsinki-NLP/opus-mt-en-de)",
|
131 |
+
example="Helsinki-NLP/opus-mt-en-de"
|
132 |
)
|
133 |
+
):
|
134 |
"""
|
135 |
Execute translation tasks.
|
136 |
|
|
|
|
|
|
|
|
|
137 |
Returns:
|
138 |
list: The translation result(s) as returned by the pipeline.
|
139 |
"""
|
140 |
|
141 |
+
translationRequest: TranslationRequest = await get_translation_request(request)
|
142 |
+
|
143 |
try:
|
144 |
pipe = pipeline("translation", model=model_name)
|
145 |
except Exception as e:
|
|
|
150 |
)
|
151 |
|
152 |
try:
|
153 |
+
result = pipe(translationRequest.inputs, **(translationRequest.parameters or {}))
|
154 |
+
except Exception as e:
|
155 |
+
logger.error(f"Inference failed for model '{model_name}': {str(e)}")
|
156 |
+
raise HTTPException(
|
157 |
+
status_code=500,
|
158 |
+
detail=f"Inference failed: {str(e)}"
|
159 |
+
)
|
160 |
+
|
161 |
+
return result
|
162 |
+
|
163 |
+
|
164 |
+
# =========================
|
165 |
+
# Zero-Shot Image Classification Task
|
166 |
+
# =========================
|
167 |
+
|
168 |
+
|
169 |
+
class ZeroShotImageClassificationRequest(BaseModel):
|
170 |
+
inputs: str
|
171 |
+
parameters: Optional[dict] = None
|
172 |
+
|
173 |
+
async def get_zero_shot_image_classification_request(
|
174 |
+
request: Request
|
175 |
+
) -> ZeroShotImageClassificationRequest:
|
176 |
+
content_type = request.headers.get("content-type", "")
|
177 |
+
if content_type.startswith("application/json"):
|
178 |
+
data = await request.json()
|
179 |
+
return ZeroShotImageClassificationRequest(**data)
|
180 |
+
if content_type.startswith("application/x-www-form-urlencoded"):
|
181 |
+
raw = await request.body()
|
182 |
+
try:
|
183 |
+
data = json.loads(raw)
|
184 |
+
return ZeroShotImageClassificationRequest(**data)
|
185 |
+
except Exception:
|
186 |
+
try:
|
187 |
+
data = json.loads(raw.decode("utf-8"))
|
188 |
+
return ZeroShotImageClassificationRequest(**data)
|
189 |
+
except Exception:
|
190 |
+
raise HTTPException(status_code=400, detail="Invalid request body")
|
191 |
+
raise HTTPException(status_code=400, detail="Unsupported content type")
|
192 |
+
|
193 |
+
|
194 |
+
|
195 |
+
@app.post(
|
196 |
+
"/zero-shot-image-classification/{model_name:path}/",
|
197 |
+
openapi_extra={
|
198 |
+
"requestBody": {
|
199 |
+
"content": {
|
200 |
+
"application/json": {
|
201 |
+
"example": {
|
202 |
+
"inputs": "base64_encoded_image_string",
|
203 |
+
"parameters": {"candidate_labels": "green, yellow, blue, white, silver"}
|
204 |
+
}
|
205 |
+
}
|
206 |
+
}
|
207 |
+
}
|
208 |
+
}
|
209 |
+
)
|
210 |
+
async def zero_shot_image_classification(
|
211 |
+
request: Request,
|
212 |
+
model_name: str = Path(
|
213 |
+
...,
|
214 |
+
description="The name of the zero-shot classification model (e.g., openai/clip-vit-large-patch14-336)",
|
215 |
+
example="openai/clip-vit-large-patch14-336"
|
216 |
+
)
|
217 |
+
):
|
218 |
+
"""
|
219 |
+
Execute zero-shot image classification tasks.
|
220 |
+
|
221 |
+
Returns:
|
222 |
+
list: The classification result(s) as returned by the pipeline.
|
223 |
+
"""
|
224 |
+
|
225 |
+
zeroShotRequest: ZeroShotImageClassificationRequest = await get_zero_shot_image_classification_request(request)
|
226 |
+
|
227 |
+
try:
|
228 |
+
pipe = pipeline("zero-shot-image-classification", model=model_name)
|
229 |
+
except Exception as e:
|
230 |
+
logger.error(f"Failed to load model '{model_name}': {str(e)}")
|
231 |
+
raise HTTPException(
|
232 |
+
status_code=404,
|
233 |
+
detail=f"Model '{model_name}' could not be loaded: {str(e)}"
|
234 |
+
)
|
235 |
+
|
236 |
+
try:
|
237 |
+
candidate_labels = []
|
238 |
+
if zeroShotRequest.parameters:
|
239 |
+
candidate_labels = zeroShotRequest.parameters.get('candidate_labels', [])
|
240 |
+
if isinstance(candidate_labels, str):
|
241 |
+
candidate_labels = [label.strip() for label in candidate_labels.split(',')]
|
242 |
+
result = pipe(zeroShotRequest.inputs, candidate_labels=candidate_labels)
|
243 |
except Exception as e:
|
244 |
logger.error(f"Inference failed for model '{model_name}': {str(e)}")
|
245 |
raise HTTPException(
|
|
|
250 |
return result
|
251 |
|
252 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
|
254 |
+
# =========================
|
255 |
+
# Image to Text Task
|
256 |
+
# =========================
|
257 |
+
|
258 |
+
|
259 |
+
async def get_encoded_image(
|
260 |
+
request: Request
|
261 |
+
) -> str:
|
262 |
+
content_type = request.headers.get("content-type", "")
|
263 |
+
if content_type.startswith("multipart/form-data"):
|
264 |
+
form = await request.form()
|
265 |
+
image = form.get("image")
|
266 |
+
if image:
|
267 |
+
image_bytes = await image.read()
|
268 |
+
return base64.b64encode(image_bytes).decode("utf-8")
|
269 |
+
if content_type.startswith("image/"):
|
270 |
+
image_bytes = await request.body()
|
271 |
+
return base64.b64encode(image_bytes).decode("utf-8")
|
272 |
+
|
273 |
+
raise HTTPException(status_code=400, detail="Unsupported content type")
|
274 |
+
|
275 |
+
|
276 |
+
|
277 |
+
@app.post(
|
278 |
+
"/image-to-text/{model_name:path}/",
|
279 |
+
openapi_extra={
|
280 |
+
"requestBody": {
|
281 |
+
"content": {
|
282 |
+
"multipart/form-data": {
|
283 |
+
"schema": {
|
284 |
+
"type": "object",
|
285 |
+
"properties": {
|
286 |
+
"image": {
|
287 |
+
"type": "string",
|
288 |
+
"format": "binary",
|
289 |
+
"description": "Image file to upload"
|
290 |
+
}
|
291 |
+
},
|
292 |
+
"required": ["image"]
|
293 |
+
}
|
294 |
+
}
|
295 |
+
}
|
296 |
+
}
|
297 |
+
}
|
298 |
+
)
|
299 |
+
async def image_to_text(
|
300 |
+
request: Request,
|
301 |
+
model_name: str = Path(
|
302 |
+
...,
|
303 |
+
description="The name of the image-to-text (e.g., Salesforce/blip-image-captioning-base)",
|
304 |
+
example="Salesforce/blip-image-captioning-base"
|
305 |
+
)
|
306 |
+
):
|
307 |
+
"""
|
308 |
+
Execute image-to-text tasks.
|
309 |
+
|
310 |
+
Returns:
|
311 |
+
list: The generated text as returned by the pipeline.
|
312 |
+
"""
|
313 |
+
|
314 |
+
encoded_image = await get_encoded_image(request)
|
315 |
+
|
316 |
+
try:
|
317 |
+
pipe = pipeline("image-to-text", model=model_name, use_fast=True)
|
318 |
+
except Exception as e:
|
319 |
+
logger.error(f"Failed to load model '{model_name}': {str(e)}")
|
320 |
+
raise HTTPException(
|
321 |
+
status_code=404,
|
322 |
+
detail=f"Model '{model_name}' could not be loaded: {str(e)}"
|
323 |
+
)
|
324 |
+
|
325 |
+
try:
|
326 |
+
result = pipe(encoded_image)
|
327 |
+
except Exception as e:
|
328 |
+
logger.error(f"Inference failed for model '{model_name}': {str(e)}")
|
329 |
+
raise HTTPException(
|
330 |
+
status_code=500,
|
331 |
+
detail=f"Inference failed: {str(e)}"
|
332 |
+
)
|
333 |
+
|
334 |
+
return result
|