Spaces:
No application file
No application file
import shutil | |
from copy import deepcopy | |
from pathlib import Path | |
import click | |
import hydra | |
import torch | |
from hydra import compose, initialize | |
from hydra.utils import instantiate | |
from loguru import logger | |
from fish_speech.models.text2semantic.llama import BaseTransformer | |
from fish_speech.models.text2semantic.lora import get_merged_state_dict | |
def merge(lora_config, base_weight, lora_weight, output): | |
output = Path(output) | |
logger.info( | |
f"Merging {base_weight} and {lora_weight} into {output} with {lora_config}" | |
) | |
with initialize(version_base="1.3", config_path="../../fish_speech/configs/lora"): | |
cfg = compose(config_name=lora_config) | |
lora_config = instantiate(cfg) | |
logger.info(f"Loaded lora model with config {lora_config}") | |
llama_model = BaseTransformer.from_pretrained( | |
path=base_weight, | |
load_weights=True, | |
lora_config=lora_config, | |
) | |
logger.info(f"Loaded llama model") | |
llama_state_dict = llama_model.state_dict() | |
llama_state_dict = {k: v for k, v in llama_state_dict.items() if "lora" not in k} | |
llama_state_dict_copy = deepcopy(llama_state_dict) | |
lora_state_dict = torch.load(lora_weight, map_location="cpu") | |
if "state_dict" in llama_state_dict: | |
llama_state_dict = llama_state_dict["state_dict"] | |
if "state_dict" in lora_state_dict: | |
lora_state_dict = lora_state_dict["state_dict"] | |
# remove prefix model. | |
if any(k.startswith("model.") for k in llama_state_dict.keys()): | |
llama_state_dict = { | |
k.replace("model.", ""): v | |
for k, v in llama_state_dict.items() | |
if k.startswith("model.") | |
} | |
if any(k.startswith("model.") for k in lora_state_dict.keys()): | |
lora_state_dict = { | |
k.replace("model.", ""): v | |
for k, v in lora_state_dict.items() | |
if k.startswith("model.") | |
} | |
logger.info(f"Found {len(llama_state_dict)} keys in llama model") | |
logger.info(f"Found {len(lora_state_dict)} keys in lora model") | |
merged_state_dict = llama_state_dict | lora_state_dict | |
llama_model.load_state_dict(merged_state_dict, strict=True) | |
logger.info(f"Merged model loaded") | |
# Trigger eval mode to merge lora | |
llama_model.eval() | |
llama_model.save_pretrained(output, drop_lora=True) | |
logger.info(f"Saved merged model to {output}, validating") | |
new_state_dict = torch.load(output / "model.pth", map_location="cpu") | |
original_keys = set(llama_state_dict_copy.keys()) | |
merged_keys = set(new_state_dict.keys()) | |
assert original_keys == merged_keys, "Keys should be same" | |
for key in original_keys: | |
diff_l1 = (new_state_dict[key] - llama_state_dict_copy[key]).abs().sum().item() | |
if diff_l1 != 0: | |
break | |
else: | |
logger.error("Merged model is same as the original model") | |
exit(1) | |
logger.info("Merged model is different from the original model, check passed") | |
if __name__ == "__main__": | |
merge() | |