Spaces:
Running
on
Zero
Running
on
Zero
DivEye - PR (fix bugs, unmodularize)
#13
by
FloofCat
- opened
app.py
CHANGED
@@ -18,95 +18,75 @@ import os
|
|
18 |
|
19 |
theme = gr.Theme.from_hub("gstaff/xkcd")
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
return -log_likelihoods
|
41 |
-
|
42 |
-
def compute_features(self, text):
|
43 |
-
surprisals = self.compute_surprisal(text)
|
44 |
-
log_likelihoods = self.compute_log_likelihoods(text)
|
45 |
-
if len(surprisals) < 10 or len(log_likelihoods) < 3:
|
46 |
-
return None
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
58 |
|
59 |
-
|
|
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
70 |
logits[0, text_slice.start-1:text_slice.stop-1, :],
|
71 |
targets
|
72 |
).detach().cpu().numpy()
|
73 |
-
|
74 |
-
def compute_bce_loss(self, logits, targets, text_slice):
|
75 |
-
return CrossEntropyLoss(reduction='none')(
|
76 |
logits[0, text_slice, :],
|
77 |
targets
|
78 |
).detach().cpu().numpy()
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
fce_loss = self.compute_fce_loss(logits, targets, text_slice)
|
91 |
-
bce_loss = self.compute_bce_loss(logits, targets, text_slice)
|
92 |
-
|
93 |
-
features = []
|
94 |
-
for p in range(1, 10):
|
95 |
-
split = len(fce_loss) * p // 10
|
96 |
-
fce_clipped = np.nan_to_num(np.clip(fce_loss[split:], -1e6, 1e6), nan=0.0, posinf=1e6, neginf=-1e6)
|
97 |
-
bce_clipped = np.nan_to_num(np.clip(bce_loss[split:], -1e6, 1e6), nan=0.0, posinf=1e6, neginf=-1e6)
|
98 |
-
features.extend([
|
99 |
-
np.mean(fce_clipped), np.max(fce_clipped), np.min(fce_clipped), np.std(fce_clipped),
|
100 |
-
np.mean(bce_clipped), np.max(bce_clipped), np.min(bce_clipped), np.std(bce_clipped)
|
101 |
-
])
|
102 |
-
return features
|
103 |
-
|
104 |
-
# ===========================================================
|
105 |
-
@spaces.GPU
|
106 |
-
def evaluate(diveye, biscope, text):
|
107 |
-
global model
|
108 |
-
diveye_features = diveye.compute_features(text)
|
109 |
-
biscope_features = biscope.detect_single_sample(text)
|
110 |
|
111 |
for f in biscope_features:
|
112 |
diveye_features.append(f)
|
@@ -133,7 +113,7 @@ def detect_ai_text(text):
|
|
133 |
)
|
134 |
|
135 |
# Call software
|
136 |
-
ai_prob = evaluate(
|
137 |
human_prob = 1 - ai_prob
|
138 |
|
139 |
if ai_prob > 0.7:
|
@@ -178,9 +158,6 @@ if torch.cuda.is_available():
|
|
178 |
model = xgb.XGBClassifier()
|
179 |
model.load_model(model_path)
|
180 |
|
181 |
-
diveye = Diversity(div_model, div_tokenizer, div_model.device)
|
182 |
-
biscope = BiScope(bi_model, bi_tokenizer, bi_model.device)
|
183 |
-
|
184 |
# Gradio app setup
|
185 |
with gr.Blocks(title="DivEye") as demo:
|
186 |
gr.HTML("""
|
|
|
18 |
|
19 |
theme = gr.Theme.from_hub("gstaff/xkcd")
|
20 |
|
21 |
+
# ===========================================================
|
22 |
+
@spaces.GPU
|
23 |
+
def evaluate(text):
|
24 |
+
global model, div_model, div_tokenizer, bi_model, bi_tokenizer
|
25 |
+
|
26 |
+
# =====================================================================
|
27 |
+
# DivEye features
|
28 |
+
diveye_features = []
|
29 |
+
# 1. Token log likelihoods
|
30 |
+
tokens = div_tokenizer.encode(text, return_tensors="pt", truncation=True, max_length=1024).to(div_model.device)
|
31 |
+
with torch.no_grad():
|
32 |
+
outputs = div_model(tokens, labels=tokens)
|
33 |
+
logits = outputs.logits
|
34 |
+
shift_logits = logits[:, :-1, :].squeeze(0)
|
35 |
+
shift_labels = tokens[:, 1:].squeeze(0)
|
36 |
+
log_probs = torch.log_softmax(shift_logits.float(), dim=-1)
|
37 |
+
token_log_likelihoods = log_probs[range(shift_labels.shape[0]), shift_labels].cpu().numpy()
|
38 |
|
39 |
+
# 2. Surprisal
|
40 |
+
surprisals = -token_log_likelihoods
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
if len(surprisals) < 10 or len(token_log_likelihoods) < 3:
|
43 |
+
diveye_features = [0.0] * 11
|
44 |
+
|
45 |
+
s = np.array(surprisals)
|
46 |
+
mean_s, std_s, var_s, skew_s, kurt_s = np.mean(s), np.std(s), np.var(s), skew(s), kurtosis(s)
|
47 |
+
diff_s = np.diff(s)
|
48 |
+
mean_diff, std_diff = np.mean(diff_s), np.std(diff_s)
|
49 |
+
first_order_diff = np.diff(token_log_likelihoods)
|
50 |
+
second_order_diff = np.diff(first_order_diff)
|
51 |
+
var_2nd = np.var(second_order_diff)
|
52 |
+
entropy_2nd = entropy(np.histogram(second_order_diff, bins=20, density=True)[0])
|
53 |
+
autocorr_2nd = np.corrcoef(second_order_diff[:-1], second_order_diff[1:])[0, 1] if len(second_order_diff) > 1 else 0
|
54 |
+
comp_ratio = len(zlib.compress(text.encode('utf-8'))) / len(text.encode('utf-8'))
|
55 |
|
56 |
+
diveye_features = [mean_s, std_s, var_s, skew_s, kurt_s, mean_diff, std_diff, var_2nd, entropy_2nd, autocorr_2nd, comp_ratio]
|
57 |
+
# =====================================================================
|
58 |
|
59 |
+
# =====================================================================
|
60 |
+
# BiScope features
|
61 |
+
COMPLETION_PROMPT_ONLY = "Complete the following text: "
|
62 |
+
prompt_ids = bi_tokenizer(COMPLETION_PROMPT_ONLY, return_tensors='pt').input_ids.to(bi_model.device)
|
63 |
+
text_ids = bi_tokenizer(text, return_tensors='pt', max_length=2000, truncation=True).input_ids.to(bi_model.device)
|
64 |
+
combined_ids = torch.cat([prompt_ids, text_ids], dim=1)
|
65 |
+
text_slice = slice(prompt_ids.shape[1], combined_ids.shape[1])
|
66 |
+
|
67 |
+
outputs = bi_model(input_ids=combined_ids)
|
68 |
+
logits = outputs.logits
|
69 |
+
targets = combined_ids[0][text_slice]
|
70 |
+
|
71 |
+
fce_loss = CrossEntropyLoss(reduction='none')(
|
72 |
logits[0, text_slice.start-1:text_slice.stop-1, :],
|
73 |
targets
|
74 |
).detach().cpu().numpy()
|
75 |
+
bce_loss = CrossEntropyLoss(reduction='none')(
|
|
|
|
|
76 |
logits[0, text_slice, :],
|
77 |
targets
|
78 |
).detach().cpu().numpy()
|
79 |
|
80 |
+
biscope_features = []
|
81 |
+
for p in range(1, 10):
|
82 |
+
split = len(fce_loss) * p // 10
|
83 |
+
fce_clipped = np.nan_to_num(np.clip(fce_loss[split:], -1e6, 1e6), nan=0.0, posinf=1e6, neginf=-1e6)
|
84 |
+
bce_clipped = np.nan_to_num(np.clip(bce_loss[split:], -1e6, 1e6), nan=0.0, posinf=1e6, neginf=-1e6)
|
85 |
+
biscope_features.extend([
|
86 |
+
np.mean(fce_clipped), np.max(fce_clipped), np.min(fce_clipped), np.std(fce_clipped),
|
87 |
+
np.mean(bce_clipped), np.max(bce_clipped), np.min(bce_clipped), np.std(bce_clipped)
|
88 |
+
])
|
89 |
+
# =====================================================================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
for f in biscope_features:
|
92 |
diveye_features.append(f)
|
|
|
113 |
)
|
114 |
|
115 |
# Call software
|
116 |
+
ai_prob = evaluate(text)
|
117 |
human_prob = 1 - ai_prob
|
118 |
|
119 |
if ai_prob > 0.7:
|
|
|
158 |
model = xgb.XGBClassifier()
|
159 |
model.load_model(model_path)
|
160 |
|
|
|
|
|
|
|
161 |
# Gradio app setup
|
162 |
with gr.Blocks(title="DivEye") as demo:
|
163 |
gr.HTML("""
|