pmkhanh7890's picture
1st
22e1b62
raw
history blame
7.24 kB
import pandas as pd
import re
import csv
from collections import Counter
from difflib import Differ
import nltk
from nltk.corpus import stopwords
nltk.download('stopwords')
def remove_stop_words(word_list):
"""
Removes stop words from a list of single words.
Args:
word_list: A list of single words.
Returns:
A new list containing only the words that are not stop words.
"""
stop_words = set(stopwords.words('english')) # Get English stop words
# Define characters to remove
chars_to_remove = r'[^a-zA-Z0-9]' # Matches any character that is not a letter or digit
cleaned_words = []
for word in word_list:
# Remove punctuation and special characters
word = re.sub(chars_to_remove, '', word)
# Check for single digits and single letters
if len(word) > 1 and not word.isdigit():
# Check if the word is not a stop word
if word.lower() not in stop_words:
cleaned_words.append(word)
return cleaned_words
def write_word_counts_to_csv(data):
"""Writes word counts to a CSV file from a dictionary.
Args:
data_dict: A dictionary containing the word count data.
filename: The name of the output CSV file.
"""
with open('data/results/[res]added_word_counts.csv', 'w', encoding='utf-8', newline='') as csvfile:
fieldnames = ['Word', 'Count']
writer = csv.writer(csvfile)
writer.writerow(fieldnames)
for word, count in data['added_word_counts']:
writer.writerow([word, count])
with open('data/results/[res]removed_word_counts.csv', 'w', encoding='utf-8', newline='') as csvfile:
fieldnames = ['Word', 'Count']
writer = csv.writer(csvfile)
writer.writerow(fieldnames)
for word, count in data['removed_word_counts']:
writer.writerow([word, count])
# with open('data/results/[res]unchanged_words.csv', 'w', encoding='utf-8', newline='') as csvfile:
# fieldnames = ['Count', 'Phrase']
# writer = csv.writer(csvfile)
# writer.writerow(fieldnames) # Write the header
# for phrase, count in data['unchanged_words']:
# writer.writerow([count, phrase])
def preprocess_text(text):
"""
Preprocesses a string by removing punctuation, numbers, and whitespace.
Args:
text: The string to preprocess.
Returns:
The preprocessed string.
"""
# Lower case
text = text.lower()
# Split text into words while keeping commas and dots within numbers
delimiters = r"(?<!\d)[ \.,;!\?\|-]+(?!\d)" # Negative lookahead and lookbehind for digits
text = re.split(delimiters, text)
return text
def compare_strings_from_csv(csv_file):
"""
Compares strings in a CSV file and returns added, removed, and unchanged substrings.
Args:
csv_file: Path to the CSV file.
Returns:
A tuple containing three lists: (removed_substrings, added_substrings, unchanged_substrings)
and word counts of added substrings
Returns None if there is an error with file reading
"""
try:
df = pd.read_csv(csv_file)
except FileNotFoundError:
print(f"Error: File '{csv_file}' not found.")
return None
except pd.errors.ParserError:
print(f"Error: Could not parse CSV file '{csv_file}'.")
return None
removed_words_total = []
added_words_total = []
unchanged_phrases_total = []
for _, row in df.iterrows():
human_text = row['human']
gpt_text = row['ChatGPT']
removed_words, added_words, unchanged_phrases = compare_strings(human_text, gpt_text)
removed_words_total += removed_words
added_words_total += added_words
unchanged_phrases_total.extend(unchanged_phrases)
added_word_counts = Counter()
for substring in added_words_total:
added_word_counts.update([substring])
sorted_added_words = sorted(added_word_counts.items(), key=lambda x: x[1], reverse=True)
removed_word_counts = Counter()
for substring in removed_words_total:
removed_word_counts.update([substring])
sorted_removed_words = sorted(removed_word_counts.items(), key=lambda x: x[1], reverse=True)
#sort phrase by number of words
unchanged_phrases_total.sort(key=lambda x: x[1], reverse=True)
return {
"unchanged_words": unchanged_phrases_total,
"added_word_counts": sorted_added_words,
"removed_word_counts": sorted_removed_words,
}
def compare_strings(a, b, n_gram=3):
"""
Compares two strings and returns lists of removed, added, and unchanged substrings.
Args:
a: The first string.
b: The second string.
Returns:
A tuple containing three lists: (removed, added, unchanged).
- removed: List of substrings removed from a.
- added: List of substrings added to b.
- unchanged: List of common substrings (at least 4 consecutive words).
"""
removed_ngrams = []
added_ngrams = []
unchanged_phrases = []
# Pre-process the string
a_splited = preprocess_text(a)
b_splited = preprocess_text(b)
# Find differences between words in a and b and generate diff list
diff = Differ().compare(a_splited, b_splited)
diff_list = list(diff)
# Find removed words/substrings
if n_gram == 1:
removed_ngrams = list(w[2:] for w in diff_list if w.startswith("-"))
removed_ngrams = remove_stop_words(removed_ngrams)
# removed_word_counts = Counter()
# for substring in removed_ngrams:
# removed_word_counts.update(substring.split())
for i in range(len(diff_list) - n_gram + 1):
if all(w.startswith("-") for w in diff_list[i:i+n_gram]):
joint_words = " ".join(diff_list[i:i+n_gram]).replace("- ", "")
removed_ngrams.append(joint_words)
# Find added words/substrings
if n_gram == 1:
added_ngrams = list(w[2:] for w in diff_list if w.startswith(("+")))
added_ngrams = remove_stop_words(added_ngrams)
for i in range(len(diff_list) - n_gram + 1):
if all(w.startswith("+") for w in diff_list[i:i+n_gram]):
joint_words = " ".join(diff_list[i:i+n_gram]).replace("+ ", "")
added_ngrams.append(joint_words)
#Find Unchanged substrings
substring = ""
count = 0
for word in diff_list:
if word.startswith(("+", "-")):
if substring != "":
if count >= 4:
unchanged_phrase = " ".join(substring.split())
unchanged_phrases.append((unchanged_phrase, count))
substring = ""
count = 0
continue
substring += " " + word
count += 1
return removed_ngrams, added_ngrams, unchanged_phrases
if __name__ == "__main__":
res = compare_strings_from_csv("data/ChatGPT_Nous_Hermes_2_Yi_34B_openchat_3_5_1210_with_best_similarity.csv")
write_word_counts_to_csv(res)
#remove_stop_words(["the", "quick", "brown", "fox", "jumps", "over", "the", "lazy", "dog"])