rag_ielts / app.py
poemsforaphrodite's picture
Update app.py
e41eb26 verified
import json
import logging
import os
import re
import subprocess
import uuid
from concurrent.futures import ThreadPoolExecutor, as_completed
from io import BytesIO
from queue import Queue
from typing import Any, Dict, List, Optional
import pandas as pd
import plotly.express as px
import PyPDF2
import streamlit as st
from dotenv import load_dotenv
from openai import OpenAI
from pydantic import BaseModel
from supabase import Client, create_client
# Set page config - MUST be the first Streamlit command
st.set_page_config(page_title="πŸ“„ PDF to Exam Questions Generator with Supabase Upload", layout="wide")
# Load environment variables from .env file (if present)
load_dotenv()
# Check for required environment variables
required_env_vars = {
"OPENAI_API_KEY": os.getenv("OPENAI_API_KEY"),
"SUPABASE_DB_URL": os.getenv("SUPABASE_DB_URL"),
"SUPABASE_API_KEY": os.getenv("SUPABASE_API_KEY")
}
missing_vars = [var for var, value in required_env_vars.items() if not value]
if missing_vars:
st.error(f"Missing required environment variables: {', '.join(missing_vars)}")
st.stop()
# Set up logging
class StringListHandler(logging.Handler):
def __init__(self):
super().__init__()
self.logs = []
def emit(self, record):
self.logs.append(self.format(record))
def get_logs(self):
return "\n".join(self.logs)
def clear(self):
self.logs = []
# Set up logging with our custom handler
log_handler = StringListHandler()
log_handler.setFormatter(logging.Formatter('%(levelname)s: %(message)s'))
logging.getLogger().addHandler(log_handler)
logging.getLogger().setLevel(logging.INFO)
# Add a filter to suppress HTTP request logging from Supabase and related libraries.
class HttpRequestFilter(logging.Filter):
def filter(self, record):
if "HTTP Request:" in record.getMessage():
return False
return True
log_handler.addFilter(HttpRequestFilter())
logging.getLogger("httpx").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
# Load environment variables from .env file (if present)
load_dotenv()
# Constants
EXAM_TYPES = ["SAT", "IELTS", "TOEFL"]
DIFFICULTY_LEVELS = ["Easy", "Medium", "Hard", "Very Hard"]
REQUIRED_FIELDS = [
"exam_type", "content_type", "exam_section", "domain", "subdomain",
"topic", "difficulty_level", "reading_passage", "question_text",
"option_a", "option_b", "option_c", "option_d", "correct_answer",
"explanation", "is_active", "source_text"
]
class ExamQuestion(BaseModel):
exam_type: str
content_type: str = "Generated"
exam_section: str
domain: str
subdomain: str
topic: str
difficulty_level: str = "Medium"
reading_passage: str
reading_passage_title: Optional[str] = None
question_text: str
option_a: str
option_b: str
option_c: str
option_d: str
correct_answer: str
explanation: str
source_text: str # The original text from which the question was generated
is_active: bool = True
class ExamQuestionResponse(BaseModel):
questions: List[ExamQuestion]
# Set up OpenAI client
try:
client = OpenAI(api_key=required_env_vars["OPENAI_API_KEY"])
logging.info("OpenAI client initialized successfully.")
except Exception as e:
logging.error(f"Failed to initialize OpenAI client: {e}")
st.error(f"Failed to initialize OpenAI client: {str(e)}")
# Set up Supabase client
SUPABASE_URL = required_env_vars["SUPABASE_DB_URL"]
SUPABASE_API_KEY = required_env_vars["SUPABASE_API_KEY"]
supabase: Client = create_client(SUPABASE_URL, SUPABASE_API_KEY)
# Create a thread-safe queue for logging
log_queue = Queue()
def safe_st_warning(message: str):
"""Thread-safe way to queue warning messages"""
log_queue.put(("warning", message))
def safe_st_error(message: str):
"""Thread-safe way to queue error messages"""
log_queue.put(("error", message))
# Define the domain structures
domain_structures = {
"SAT": """SAT Domains and Subdomains:
1. Reading and Writing:
- Craft and Structure:
* Words in Context
* Text Structure and Purpose
* Cross-Text Connections
- Information and Ideas:
* Central Ideas and Details
* Command of Textual Evidence
* Command of Quantitative Evidence
* Inferences
- Standard English Conventions:
* Boundaries
* Form, Structure, and Sense
- Expression of Ideas:
* Transitions
* Rhetorical Synthesis
2. Mathematics:
- Algebra:
* Linear equations in one variable
* Linear equations in two variables
* Linear functions
* Systems of two linear equations in two variables
* Linear inequalities in one or two variables
- Advanced Mathematics:
* Equivalent expressions
* Nonlinear equations in one variable and systems of equations in two variables
* Nonlinear functions
- Problem Solving and Data Analysis:
* Ratios, rates, proportional relationships, and units
* Percentages
* One-variable data: distributions and measures of center and spread
* Two-variable data: models and scatterplots
* Probability and conditional probability
* Inference from sample statistics and margin of error
* Evaluating statistical claims: observational studies and experiments
- Geometry and Trigonometry:
* Area and volume
* Lines, angles, and triangles
* Right triangles and trigonometry
* Circles""",
"IELTS": """IELTS Domains and Subdomains:
1. Reading:
- Information Location:
* Scanning for Details
* Skimming for Main Ideas
* Locating Specific Information
* Finding Supporting Evidence
- Critical Analysis:
* Author's Purpose
* Text Organization
* Opinion and Attitude
* Argument Analysis
- Vocabulary and Reference:
* Word Meaning in Context
* Reference Words
* Paraphrase Recognition
* Academic Vocabulary
2. Writing:
- Task Analysis:
* Data Interpretation
* Process Description
* Compare and Contrast
* Problem and Solution
- Essay Development:
* Argument Construction
* Evidence Support
* Coherence and Cohesion
* Academic Style
- Language Control:
* Grammar Range
* Vocabulary Usage
* Sentence Structure
* Punctuation
3. Speaking:
- Personal Expression:
* Self Introduction
* Personal Experience
* Opinion Expression
* Future Plans
- Topic Development:
* Extended Discourse
* Topic Analysis
* Example Provision
* Abstract Discussion
- Communication Skills:
* Fluency and Coherence
* Pronunciation
* Interactive Communication
* Response Relevance
4. Listening:
- Academic Understanding:
* Lecture Comprehension
* Discussion Analysis
* Main Points Identification
* Detail Recognition
- Pragmatic Understanding:
* Speaker Attitude
* Function of Utterances
* Degree of Certainty
* Speaker Relationship
- Connecting Information:
* Information Organization
* Connecting Content
* Understanding Examples
* Making Inferences
5. Speaking:
- Independent Tasks:
* Opinion Expression
* Personal Experience
* Preference Justification
* Choice Explanation
- Integrated Tasks:
* Lecture Summary
* Reading-Listening Integration
* Campus Situation Response
* Academic Topic Discussion
- Delivery Skills:
* Pronunciation
* Intonation
* Rhythm and Pacing
* Natural Flow
6. Writing:
- Independent Writing:
* Essay Organization
* Thesis Development
* Evidence Support
* Conclusion Writing
- Integrated Writing:
* Source Integration
* Information Synthesis
* Accurate Reporting
* Response Organization
- Language Control:
* Grammar Accuracy
* Vocabulary Range
* Sentence Variety
* Academic Style""",
"TOEFL": """TOEFL Domains and Subdomains:
1. Reading:
- Comprehension:
* Main Idea and Details
* Inference Making
* Author's Purpose
* Vocabulary in Context
- Analysis:
* Text Organization
* Information Integration
* Argument Evaluation
* Evidence Assessment
- Academic Skills:
* Paraphrase Recognition
* Summary Skills
* Table Completion
* Classification
2. Listening:
- Academic Understanding:
* Lecture Comprehension
* Discussion Analysis
* Main Points Identification
* Detail Recognition
- Pragmatic Understanding:
* Speaker Attitude
* Function of Utterances
* Degree of Certainty
* Speaker Relationship
- Connecting Information:
* Information Organization
* Connecting Content
* Understanding Examples
* Making Inferences
3. Speaking:
- Independent Tasks:
* Opinion Expression
* Personal Experience
* Preference Justification
* Choice Explanation
- Integrated Tasks:
* Lecture Summary
* Reading-Listening Integration
* Campus Situation Response
* Academic Topic Discussion
- Delivery Skills:
* Pronunciation
* Intonation
* Rhythm and Pacing
* Natural Flow
4. Writing:
- Independent Writing:
* Essay Organization
* Thesis Development
* Evidence Support
* Conclusion Writing
- Integrated Writing:
* Source Integration
* Information Synthesis
* Accurate Reporting
* Response Organization
- Language Control:
* Grammar Accuracy
* Vocabulary Range
* Sentence Variety
* Academic Style"""
}
def extract_text_from_pdf(pdf_file) -> str:
"""
Extracts all text from a PDF file and returns it as a single string.
"""
try:
# Convert to BytesIO if needed
if isinstance(pdf_file, (str, bytes)):
pdf_file = BytesIO(pdf_file)
# Seek to beginning of file to ensure we can read it
pdf_file.seek(0)
reader = PyPDF2.PdfReader(pdf_file)
text = ""
logging.info(f"Processing PDF with {len(reader.pages)} pages")
# Extract text from all pages
for page_num in range(len(reader.pages)):
try:
page = reader.pages[page_num]
page_text = page.extract_text()
if page_text:
text += f"\n--- Page {page_num + 1} ---\n{page_text}\n"
logging.info(f"Successfully extracted text from page {page_num + 1}")
else:
logging.warning(f"No text extracted from page {page_num + 1}")
except Exception as e:
logging.error(f"Error processing page {page_num + 1}: {str(e)}")
continue
if not text.strip():
logging.error("No text was extracted from any page of the PDF")
return ""
logging.info(f"Successfully extracted {len(text)} characters of text")
# Log a preview of the extracted text
preview = text[:500] + "..." if len(text) > 500 else text
logging.info(f"Text preview:\n{preview}")
return text
except Exception as e:
logging.error(f"Error extracting text from PDF: {str(e)}")
return ""
def clean_json_string(text: str) -> str:
"""
Clean and extract JSON from the response text.
Handles both array and object responses, ensuring the output is in {"questions": [...]} format.
"""
try:
# First try to parse the text directly
parsed = json.loads(text)
# If it's an array, wrap it in a questions object
if isinstance(parsed, list):
return json.dumps({"questions": parsed})
# If it's an object with questions, return as is
if isinstance(parsed, dict) and "questions" in parsed:
return text
# If it's an object but missing questions array, wrap it
if isinstance(parsed, dict):
return json.dumps({"questions": [parsed]})
raise ValueError("Invalid JSON structure")
except json.JSONDecodeError:
# If direct parsing fails, try to clean and extract JSON
try:
# Remove any markdown code block syntax
text = re.sub(r'```json\s*|\s*```', '', text)
# Find JSON-like structure
json_match = re.search(r'(\{[\s\S]*\}|\[[\s\S]*\])', text)
if json_match:
potential_json = json_match.group(0)
# Clean up common issues
potential_json = re.sub(r',(\s*[\}\]])', r'\1', potential_json) # Remove trailing commas
potential_json = re.sub(r'\\n', ' ', potential_json) # Replace newlines
potential_json = re.sub(r'\\([^"])', r'\1', potential_json) # Remove invalid escapes
# Parse and validate the cleaned JSON
parsed = json.loads(potential_json)
# Handle different formats
if isinstance(parsed, list):
return json.dumps({"questions": parsed})
elif isinstance(parsed, dict) and "questions" in parsed:
return json.dumps(parsed)
elif isinstance(parsed, dict):
return json.dumps({"questions": [parsed]})
else:
raise ValueError("Invalid JSON structure")
except (json.JSONDecodeError, AttributeError):
pass
# If all cleaning attempts fail, raise an error
raise ValueError("Could not extract valid JSON from response")
def process_text(text: str, exam_type: str, structure: str, source_file: str) -> (List[Dict[str, Any]], float):
"""
Process the entire text by extracting and formatting existing questions.
"""
# Create a container for this chunk's processing
with st.expander(f"πŸ“ Processing Text Chunk", expanded=True):
col1, col2 = st.columns([3, 1])
with col1:
status = st.empty()
status.info("πŸ€– Sending request to AI...")
with col2:
progress = st.progress(0)
prompt = f"""You are a question extractor. Your task is to extract and format EVERY SINGLE question from the provided text into a complete JSON array.
ABSOLUTELY CRITICAL:
1. You MUST write out EVERY SINGLE question in full - no exceptions
2. DO NOT use any comments like "Additional questions would follow"
3. DO NOT add any notes or explanations outside the JSON
4. DO NOT use any placeholders or summaries
5. DO NOT mention "subset of questions" or similar
6. If there are 50 questions in the text, your JSON must contain exactly 50 complete question objects
7. If you hit a length limit, stop at the last complete question you can include
8. The response should be PURE JSON - nothing else
9. SKIP ANY QUESTIONS that refer to images, diagrams, graphs, figures, or visual elements
10. If a question mentions "look at the image", "in the picture", "as shown in", etc., DO NOT include it
11. For each question, include the specific source text that the question is based on
Text to process:
{text}
Domain Structure:
{structure}
Format EVERY question using this exact JSON structure:
{{
"exam_type": "{exam_type}",
"content_type": "Generated",
"exam_section": "{exam_type.lower()}",
"domain": "domain_from_structure",
"subdomain": "subdomain_from_structure",
"topic": "topic_from_structure",
"difficulty_level": "one_of[Easy,Medium,Hard,Very Hard]",
"reading_passage": "exact_passage_from_text",
"reading_passage_title": "title_from_text_or_generate_appropriate_title",
"question_text": "exact_question_from_text",
"option_a": "exact_option_a_from_text",
"option_b": "exact_option_b_from_text",
"option_c": "exact_option_c_from_text",
"option_d": "exact_option_d_from_text",
"correct_answer": "one_of[A,B,C,D]_determined_from_context",
"explanation": "explanation_from_text_or_generate_based_on_answer",
"source_text": "exact_text_snippet_that_this_question_is_based_on",
"is_active": true
}}"""
try:
logging.info("Sending request to OpenAI...")
progress.progress(25)
status.info("πŸ€– Generating questions...")
response = client.chat.completions.create(
model="o3-mini",
messages=[
{"role": "user", "content": prompt}
],
response_format={"type": "json_object"} # Request JSON response format
)
content = response.choices[0].message.content.strip()
logging.info(f"Received response of length: {len(content)} characters")
progress.progress(50)
status.info("✨ Processing AI response...")
# Log the first 200 characters of the response for debugging
logging.info(f"Response preview: {content[:200]}...")
# Clean and validate JSON
try:
logging.info("Attempting to clean and parse JSON...")
content = clean_json_string(content)
parsed_data = json.loads(content)
progress.progress(75)
if not isinstance(parsed_data, dict) or 'questions' not in parsed_data:
error_msg = "Response missing 'questions' array"
logging.error(error_msg)
status.error(error_msg)
raise ValueError(error_msg)
questions = parsed_data['questions']
if not isinstance(questions, list):
error_msg = "'questions' is not an array"
logging.error(error_msg)
status.error(error_msg)
raise ValueError(error_msg)
logging.info(f"Found {len(questions)} questions in response")
status.success(f"πŸ“Š Found {len(questions)} questions")
# Validate questions
valid_questions = []
invalid_count = 0
# Create a validation progress bar
validation_progress = st.progress(0)
validation_status = st.empty()
validation_status.info("πŸ” Validating questions...")
# Default values for missing fields
default_values = {
"exam_type": exam_type,
"content_type": "Generated",
"exam_section": exam_type.lower(),
"domain": "General",
"subdomain": "General",
"topic": "General",
"difficulty_level": "Medium",
"reading_passage_title": None,
"is_active": True,
"source_file": source_file,
"source_text": text # Add default source text
}
for q_idx, q in enumerate(questions, 1):
# Add default values for missing fields
for field, default_value in default_values.items():
if field not in q or q[field] is None:
q[field] = default_value
validation_errors = []
# Required fields that must have non-empty values
critical_fields = [
"question_text",
"option_a",
"option_b",
"option_c",
"option_d",
"correct_answer",
"explanation",
"source_text" # Add source_text as a critical field
]
# Validate critical fields
missing_fields = [f for f in critical_fields if not q.get(f)]
if missing_fields:
validation_errors.append(f"Missing critical fields: {missing_fields}")
# Validate field lengths
if len(q.get("question_text", "")) < 20:
validation_errors.append("Question text too short (min 20 chars)")
# Check if this is a math question
is_math = any(math_term in q.get('domain', '').lower() for math_term in ['math', 'algebra', 'geometry', 'calculus', 'arithmetic'])
# Validate correct answer format - only for non-math questions
if not is_math and q.get("correct_answer") not in ["A", "B", "C", "D"]:
validation_errors.append("Invalid correct_answer format (must be A, B, C, or D)")
# For math questions, just ensure there is a correct answer
if is_math and not q.get("correct_answer"):
validation_errors.append("Missing correct answer")
# Validate difficulty level
if q.get("difficulty_level") not in DIFFICULTY_LEVELS:
q["difficulty_level"] = "Medium" # Set default if invalid
if validation_errors:
invalid_count += 1
error_msg = f"Question {q_idx} validation failed: {', '.join(validation_errors)}"
logging.warning(error_msg)
with st.expander(f"⚠️ Question {q_idx} Validation Issues", expanded=False):
st.warning(error_msg)
else:
valid_questions.append(q)
logging.info(f"Question {q_idx} passed validation")
# Update validation progress
validation_progress.progress(q_idx / len(questions))
validation_status.info(f"πŸ” Validating questions... ({q_idx}/{len(questions)})")
progress.progress(100)
if not valid_questions:
error_msg = f"No valid questions were generated. {invalid_count} questions failed validation."
logging.error(error_msg)
status.error(error_msg)
return [], 0.0
validation_status.success(f"βœ… Successfully validated {len(valid_questions)} questions out of {len(questions)}")
# Calculate and log cost
input_tokens = len(prompt) / 4 # Rough estimate: 4 chars per token
output_tokens = len(content) / 4
# o3-mini pricing:
# Input: $1.10 per 1M tokens
# Output: $4.40 per 1M tokens
text_cost = (input_tokens / 1_000_000 * 1.10) + (output_tokens / 1_000_000 * 4.40)
logging.info(f"Estimated cost for this chunk: ${text_cost:.6f}")
st.success(f"✨ Generated {len(valid_questions)} valid questions (Cost: ${text_cost:.6f})")
return valid_questions, text_cost
except (json.JSONDecodeError, ValueError) as e:
error_msg = f"JSON parsing error: {str(e)}"
logging.error(f"{error_msg}\nResponse content: {content}")
status.error(error_msg)
# Log the problematic content for debugging
with st.expander("Show problematic response"):
st.code(content)
return [], 0.0
except Exception as e:
error_msg = f"Error processing text: {str(e)}"
logging.error(error_msg)
status.error(error_msg)
return [], 0.0
def process_chunk(chunk: str, exam_type: str, idx: int, structure: str) -> (List[Dict[str, Any]], float):
"""
Process a single text chunk by first cleaning the text and then generating exam questions in a single LLM call.
This reduces the cost by combining cleaning and generation into one request.
Returns a tuple (valid_questions, chunk_cost).
"""
# Combined prompt that instructs the model to do two tasks: clean the text and then generate multiple exam questions.
combined_prompt = f"""
You are an expert text cleaner and exam question generator. First, clean and format the following text (fixing OCR issues and spacing) while preserving its exact meaning.
Then, based on the cleaned text, generate ALL possible exam questions. Extract every testable concept and create a comprehensive set of questions. Do not limit the number of questions - generate a question for every distinct piece of information or concept in the text.
Exam Question JSON Structure:
{{
"exam_type": "{exam_type}",
"content_type": "Generated",
"exam_section": "{exam_type.lower()}",
"domain": "domain_from_structure",
"subdomain": "subdomain_from_structure",
"topic": "topic_from_structure",
"difficulty_level": "one_of[Easy,Medium,Hard,Very Hard]",
"reading_passage": "complete_passage_text",
"reading_passage_title": "title_or_null",
"question_text": "question_text",
"option_a": "first_option",
"option_b": "second_option",
"option_c": "third_option",
"option_d": "fourth_option",
"correct_answer": "one_of[A,B,C,D]",
"explanation": "detailed_explanation",
"is_active": true
}}
Domain Structure:
{structure}
Text to process:
{chunk}
Return ONLY a valid JSON object with an array of questions under the key "questions" and no additional explanation.
Please provide the response in valid JSON format.
"""
try:
response = client.chat.completions.create(
model="o3-mini",
messages=[
{"role": "user", "content": combined_prompt},
],
response_format={"type": "json_object"} # Request JSON response format
)
content = response.choices[0].message.content.strip()
# Estimate tokens (rough conversion: assume 1 token ~ 4 characters)
input_tokens = len(combined_prompt) / 4
output_tokens = len(content) / 4
# o3-mini pricing:
# Input: $1.10 per 1M tokens
# Output: $4.40 per 1M tokens
chunk_cost = (input_tokens / 1_000_000 * 1.10) + (output_tokens / 1_000_000 * 4.40)
try:
# Parse JSON response
parsed_data = json.loads(content)
questions = parsed_data.get("questions", [])
# Validate each question with the same checks.
required_fields = [
"exam_type", "content_type", "exam_section", "domain", "subdomain",
"topic", "difficulty_level", "reading_passage", "question_text",
"option_a", "option_b", "option_c", "option_d", "correct_answer",
"explanation", "is_active"
]
valid_questions = []
for q in questions:
missing_fields = [f for f in required_fields if f not in q or not q[f]]
if missing_fields:
logging.warning(f"Question missing required fields: {missing_fields}")
continue
if len(q["reading_passage"]) < 100:
logging.warning("Reading passage too short")
continue
if len(q["question_text"]) < 20:
logging.warning("Question text too short")
continue
if len(q["explanation"]) < 50:
logging.warning("Explanation too short")
continue
if q["correct_answer"] not in ["A", "B", "C", "D"]:
logging.warning("Invalid correct_answer format")
continue
valid_questions.append(q)
if len(valid_questions) < 3:
logging.warning(f"Generated only {len(valid_questions)} valid questions, expected at least 3")
return [], chunk_cost
return valid_questions, chunk_cost
except json.JSONDecodeError as je:
logging.error(f"JSON parsing error in chunk {idx + 1}: {str(je)}")
return [], chunk_cost
except Exception as e:
logging.error(f"Error processing response: {str(e)}")
return [], chunk_cost
except Exception as e:
logging.error(f"Error processing chunk {idx + 1}: {str(e)}")
safe_st_error(f"Error generating questions for chunk {idx + 1}: {str(e)}")
return [], 0.0
def generate_questions(text_chunks: List[str], exam_type: str) -> (List[Dict[str, Any]], float):
"""
Generates questions for each text chunk using concurrent processing.
Returns a tuple (questions, total_cost) where total_cost is the estimated GPT cost.
"""
all_questions = []
total_cost = 0.0
structure = domain_structures.get(exam_type, "")
# Create progress tracking elements in the main thread
progress_placeholder = st.empty()
status_placeholder = st.empty()
metrics_placeholder = st.empty()
# Process chunks concurrently
with ThreadPoolExecutor() as executor:
futures = [
executor.submit(process_chunk, chunk, exam_type, idx, structure)
for idx, chunk in enumerate(text_chunks)
]
completed = 0
total = len(text_chunks)
total_questions = 0
# Process results as they complete
for future in as_completed(futures):
try:
chunk_questions, chunk_cost = future.result()
all_questions.extend(chunk_questions)
total_cost += chunk_cost
total_questions += len(chunk_questions)
# Update progress in the main thread
completed += 1
progress = completed / total
# Update UI elements
progress_placeholder.progress(progress)
status_placeholder.text(f"Processing chunks: {completed}/{total}")
metrics_placeholder.metric(
label="Progress",
value=f"{completed}/{total} chunks",
delta=f"{total_questions} questions generated"
)
# Process any queued messages
while not log_queue.empty():
msg_type, message = log_queue.get()
if msg_type == "warning":
st.warning(message)
elif msg_type == "error":
st.error(message)
except Exception as e:
st.error(f"Error processing chunk: {str(e)}")
# Show final summary
st.success(f"βœ… Processing complete! Generated {total_questions} questions from {total} chunks. (Estimated cost: ${total_cost:.6f})")
# Clear progress tracking elements
progress_placeholder.empty()
status_placeholder.empty()
metrics_placeholder.empty()
return all_questions, total_cost
def upload_questions_to_supabase(generated_questions: List[Dict[str, Any]], source_file: str):
"""
Uploads generated questions to Supabase.
Args:
generated_questions: List of question dictionaries.
source_file: Name of the source PDF file.
"""
# Create a container for upload progress
with st.expander("πŸ“€ Uploading Questions", expanded=True):
st.markdown("### Upload Progress")
# Create metrics for upload stats
col1, col2, col3 = st.columns(3)
with col1:
total_metric = st.metric("Total Questions", len(generated_questions))
with col2:
success_metric = st.metric("Uploaded", "0")
with col3:
failed_metric = st.metric("Failed", "0")
# Progress bar and status
progress = st.progress(0)
status = st.empty()
total = len(generated_questions)
successful_uploads = 0
failed_uploads = 0
for idx, question in enumerate(generated_questions):
status.info(f"πŸ“€ Uploading question {idx+1}/{total}")
# Generate a new valid UUID regardless of what was provided
new_uuid = str(uuid.uuid4())
# Set default values if not present and match the table schema
question_fields = {
"id": new_uuid,
"exam_type": question.get("exam_type", "Unknown"),
"content_type": question.get("content_type", "Generated"),
"exam_section": question.get("exam_section") or question.get("exam_type", "Unknown").lower(),
"domain": question.get("domain", "General"),
"subdomain": question.get("subdomain", "General"),
"topic": question.get("topic", "General"),
"difficulty_level": question.get("difficulty_level"),
"reading_passage": question.get("reading_passage"),
"question_text": question.get("question_text", "Not Available"),
"option_a": question.get("option_a"),
"option_b": question.get("option_b"),
"option_c": question.get("option_c"),
"option_d": question.get("option_d"),
"correct_answer": question.get("correct_answer", "Not Available"),
"explanation": question.get("explanation"),
"source_file": source_file,
"is_active": question.get("is_active", True),
"is_fixed": False,
"metadata": json.dumps(question.get("metadata")) if question.get("metadata") else None,
"source_text": question.get("source_text")
}
try:
# Insert the question and get the response
response = supabase.table("exam_contents").insert(question_fields).execute()
# Check if the response data indicates success
if response.data:
successful_uploads += 1
success_metric.metric("Uploaded", str(successful_uploads), delta=1)
else:
failed_uploads += 1
failed_metric.metric("Failed", str(failed_uploads), delta=1)
with st.expander(f"⚠️ Upload Issue - Question {idx+1}", expanded=False):
st.warning(f"Failed to insert question: {response.error}")
except Exception as e:
failed_uploads += 1
failed_metric.metric("Failed", str(failed_uploads), delta=1)
with st.expander(f"❌ Upload Error - Question {idx+1}", expanded=False):
st.error(f"Error uploading question: {str(e)}")
# Update progress
progress.progress((idx + 1) / total)
# Show final upload summary
if failed_uploads == 0:
status.success(f"βœ… Upload complete! Successfully uploaded all {successful_uploads} questions.")
else:
status.warning(f"⚠️ Upload complete with some issues. Successful: {successful_uploads}, Failed: {failed_uploads}")
def split_text_into_chunks(text: str, max_chunk_size: int = 20000) -> List[str]:
# Ensure that text is a string before processing.
if not isinstance(text, str):
try:
text = text.decode("utf-8")
except Exception:
text = str(text)
# Remove any leading/trailing whitespace.
text = text.strip()
total_length = len(text)
# Split the text into fixed-size chunks using slicing.
chunks = [text[i:i+max_chunk_size] for i in range(0, total_length, max_chunk_size)]
logging.info(f"Split text into {len(chunks)} chunks of up to {max_chunk_size} characters each.")
return chunks
def check_duplicate_pdf(pdf_file) -> bool:
"""
Check if a PDF file has already been processed by comparing its name with existing source files.
Returns True if the file is a duplicate, False otherwise.
"""
try:
existing_files = get_unique_source_files()
return pdf_file.name in existing_files
except Exception as e:
logging.error(f"Error checking for duplicate PDF: {str(e)}")
return False
def process_pdfs(pdf_files, exam_type):
"""
Process multiple PDF files and generate questions.
"""
# Create a container for logs
log_container = st.container()
with log_container:
st.subheader("Processing Logs")
log_output = st.empty()
all_questions = []
overall_cost = 0.0
progress_text = st.empty()
progress_bar = st.progress(0)
structure = domain_structures.get(exam_type, "")
# Check for duplicates before processing
duplicate_files = []
for pdf_file in pdf_files:
if check_duplicate_pdf(pdf_file):
duplicate_files.append(pdf_file.name)
if duplicate_files:
st.warning(f"The following files have already been processed:\n" +
"\n".join(f"- {file}" for file in duplicate_files))
# Filter out duplicate files
pdf_files = [f for f in pdf_files if f.name not in duplicate_files]
if not pdf_files:
st.error("No new files to process. Please upload different PDF files.")
return None, None
for i, pdf_file in enumerate(pdf_files):
file_msg = f"Processing file {i+1}/{len(pdf_files)}: {pdf_file.name}"
progress_text.text(file_msg)
logging.info(file_msg)
try:
# Read the file content directly from the UploadedFile object
pdf_content = pdf_file.getvalue()
pdf_file_obj = BytesIO(pdf_content)
# Extract text
full_text = extract_text_from_pdf(pdf_file_obj)
if not full_text:
warning_msg = f"No text extracted from {pdf_file.name}"
logging.warning(warning_msg)
st.warning(warning_msg)
continue
# Log the size of extracted text
logging.info(f"Extracted {len(full_text)} characters from {pdf_file.name}")
try:
# Split text into smaller chunks based on question sets
chunks = split_text_into_chunks(full_text)
chunk_msg = f"Split {pdf_file.name} into {len(chunks)} chunks"
logging.info(chunk_msg)
st.info(chunk_msg)
# Log more details about chunks
for idx, chunk in enumerate(chunks):
logging.info(f"Chunk {idx+1} contains {chunk.count('Question')} potential questions")
logging.info(f"Chunk {idx+1} size: {len(chunk)} characters")
chunk_progress = st.progress(0)
chunk_status = st.empty()
# Process each chunk
for chunk_idx, chunk in enumerate(chunks):
chunk_msg = f"Processing chunk {chunk_idx + 1}/{len(chunks)} of {pdf_file.name}"
chunk_status.text(chunk_msg)
logging.info(chunk_msg)
# Process the chunk
chunk_questions, chunk_cost = process_text(chunk, exam_type, structure, pdf_file.name)
overall_cost += chunk_cost
if chunk_questions:
all_questions.extend(chunk_questions)
success_msg = f"Generated {len(chunk_questions)} questions from chunk {chunk_idx + 1}"
logging.info(success_msg)
st.success(success_msg)
# Upload chunk questions
upload_msg = f"Uploading {len(chunk_questions)} questions to database..."
logging.info(upload_msg)
st.text(upload_msg)
upload_questions_to_supabase(chunk_questions, pdf_file.name)
else:
warning_msg = f"No valid questions generated from chunk {chunk_idx + 1}"
logging.warning(warning_msg)
st.warning(warning_msg)
chunk_progress.progress((chunk_idx + 1) / len(chunks))
# Update log display
log_output.text_area("Processing Logs", value=log_handler.get_logs(), height=200)
except Exception as e:
error_msg = f"Error processing {pdf_file.name}: {str(e)}"
logging.error(error_msg)
st.error(error_msg)
except Exception as e:
st.error(f"Error processing file {pdf_file.name}: {str(e)}")
# Update overall progress
progress_bar.progress((i + 1) / len(pdf_files))
# Final summary
if all_questions:
success_msg = f"Successfully generated {len(all_questions)} questions total. Total cost: ${overall_cost:.6f}"
logging.info(success_msg)
st.success(success_msg)
# Create the JSON output
questions_json = json.dumps(all_questions, indent=4)
return questions_json, questions_json.encode('utf-8')
else:
warning_msg = "No questions were generated from any of the files."
logging.warning(warning_msg)
st.warning(warning_msg)
return None, None
def get_questions(filters=None):
"""Fetch questions from Supabase with optional filters."""
try:
# Initialize an empty list to store all questions
all_questions = []
page_size = 1000 # Supabase default page size
current_start = 0
while True:
# Build the query with pagination
query = supabase.table("exam_contents").select("*").range(current_start, current_start + page_size - 1)
# Apply filters if any
if filters:
for key, value in filters.items():
if value and value != "All":
query = query.eq(key, value)
# Execute query
response = query.execute()
# If no data returned, break the loop
if not response.data:
break
# Add the current page's data to our results
all_questions.extend(response.data)
# If we got less than a full page, we're done
if len(response.data) < page_size:
break
# Move to next page
current_start += page_size
logging.info(f"Retrieved total of {len(all_questions)} questions from database")
return all_questions
except Exception as e:
logging.error(f"Error fetching questions: {e}")
st.error(f"Database error: {str(e)}")
return []
def get_analytics_data(questions):
"""Generate analytics data from questions."""
df = pd.DataFrame(questions)
analytics = {
'total_questions': len(df),
'active_questions': len([q for q in questions if q.get('is_active', True)]),
'inactive_questions': len([q for q in questions if not q.get('is_active', True)]),
'unfixed_questions': len([q for q in questions if not q.get('is_fixed', False)])
}
# Basic statistics
if 'exam_type' in df.columns:
analytics['questions_by_exam'] = df['exam_type'].value_counts()
else:
analytics['questions_by_exam'] = pd.Series(dtype='int64')
if 'difficulty_level' in df.columns:
analytics['questions_by_difficulty'] = df['difficulty_level'].value_counts()
else:
analytics['questions_by_difficulty'] = pd.Series(dtype='int64')
if 'domain' in df.columns:
analytics['questions_by_domain'] = df['domain'].value_counts()
else:
analytics['questions_by_domain'] = pd.Series(dtype='int64')
# Include exam_type in the domain/subdomain grouping
if all(col in df.columns for col in ['exam_type', 'domain', 'subdomain']):
analytics['questions_by_subdomain'] = df.groupby(['exam_type', 'domain', 'subdomain']).size().reset_index(name='count')
else:
analytics['questions_by_subdomain'] = pd.DataFrame(columns=['exam_type', 'domain', 'subdomain', 'count'])
# Time-based analytics
if 'created_at' in df.columns:
df['created_at'] = pd.to_datetime(df['created_at'])
analytics['questions_by_date'] = df.resample('D', on='created_at').size()
analytics['questions_by_month'] = df.resample('M', on='created_at').size()
analytics['recent_activity'] = df.sort_values('created_at', ascending=False).head(10)
# Content coverage analysis
if 'reading_passage' in df.columns:
analytics['has_passage'] = df['reading_passage'].notna().sum()
analytics['passage_ratio'] = (df['reading_passage'].notna().sum() / len(df)) * 100 if len(df) > 0 else 0
# Calculate average passage length
df['passage_length'] = df['reading_passage'].str.len().fillna(0)
analytics['avg_passage_length'] = df['passage_length'].mean()
analytics['passage_length_dist'] = df['passage_length'].describe()
# Question quality metrics
if 'explanation' in df.columns:
analytics['has_explanation'] = df['explanation'].notna().sum()
analytics['explanation_ratio'] = (df['explanation'].notna().sum() / len(df)) * 100 if len(df) > 0 else 0
# Calculate explanation comprehensiveness
df['explanation_length'] = df['explanation'].str.len().fillna(0)
analytics['avg_explanation_length'] = df['explanation_length'].mean()
analytics['explanation_length_dist'] = df['explanation_length'].describe()
# Options analysis
option_cols = ['option_a', 'option_b', 'option_c', 'option_d']
if all(col in df.columns for col in option_cols):
df['options_count'] = df[option_cols].notna().sum(axis=1)
analytics['complete_options'] = (df['options_count'] == 4).sum()
analytics['options_ratio'] = (analytics['complete_options'] / len(df)) * 100 if len(df) > 0 else 0
# Domain coverage analysis
if 'domain' in df.columns:
domain_coverage = df.groupby(['domain'])['subdomain'].nunique().reset_index()
domain_coverage.columns = ['domain', 'unique_subdomains']
analytics['domain_coverage'] = domain_coverage
# Calculate domain balance score (0-100) per exam type
domain_balance_scores = []
for exam_type in df['exam_type'].unique():
exam_domain_counts = df[df['exam_type'] == exam_type]['domain'].value_counts()
if not exam_domain_counts.empty:
max_count = exam_domain_counts.max()
min_count = exam_domain_counts.min()
score = ((1 - (max_count - min_count) / max_count) * 100) if max_count > 0 else 100
domain_balance_scores.append({'exam_type': exam_type, 'balance_score': score})
analytics['domain_balance_by_exam'] = pd.DataFrame(domain_balance_scores)
analytics['domain_balance_score'] = analytics['domain_balance_by_exam']['balance_score'].mean()
return analytics
def rewrite_question(question: Dict[str, Any], prompt: str = "") -> Dict[str, Any]:
"""
Use LLM to rewrite the question, passage, and options while maintaining the same concept.
"""
base_prompt = """Rewrite the following exam question with a new passage and options. Keep the same concept, difficulty level, and correct answer position, but create fresh content."""
# Add custom prompt if provided
if prompt:
base_prompt += f"\n\nSpecial Instructions: {prompt}"
prompt = f"""{base_prompt}
Current Question:
Reading Passage: {question.get('reading_passage', '')}
Question: {question.get('question_text', '')}
Options:
A) {question.get('option_a', '')}
B) {question.get('option_b', '')}
C) {question.get('option_c', '')}
D) {question.get('option_d', '')}
Correct Answer: {question.get('correct_answer', '')}
Explanation: {question.get('explanation', '')}
IMPORTANT LENGTH REQUIREMENTS:
- Reading passage must be AT LEAST 100 characters (preferably 200-300)
- Question text must be AT LEAST 50 characters
- Options can be concise but clear (no minimum length)
- Explanation must be AT LEAST 50 characters
Requirements:
1. Create a new reading passage that:
- Must be AT LEAST 100 characters (preferably 200-300)
- Covers the same concepts in detail
- Maintains similar complexity
- Uses rich context and examples
{"- Incorporates the special instructions provided above" if prompt else ""}
2. Write a detailed question that:
- Must be AT LEAST 50 characters
- Clearly states what is being asked
- Includes necessary context
3. Create clear options that:
- Are concise but clear
- Are distinct from each other
- Follow a similar format
- Maintain the correct answer in the same position
4. Write a good explanation that:
- Must be AT LEAST 50 characters
- Explains the correct answer
- Provides clear reasoning
- References the passage when relevant
Return ONLY a JSON object with the following structure:
{{
"reading_passage": "new_passage (MINIMUM 100 characters)",
"question_text": "new_question (MINIMUM 50 characters)",
"option_a": "new_option_a (concise)",
"option_b": "new_option_b (concise)",
"option_c": "new_option_c (concise)",
"option_d": "new_option_d (concise)",
"explanation": "new_explanation (MINIMUM 50 characters)"
}}"""
try:
response = client.chat.completions.create(
model="o3-mini",
messages=[
{
"role": "system",
"content": "You are an expert at rewriting exam questions. Create a detailed reading passage (100+ chars) and clear question (50+ chars). Options should be concise but clear. Explanation should be thorough (50+ chars)."
},
{"role": "user", "content": prompt}
],
temperature=0.7,
response_format={"type": "json_object"} # Request JSON response format
)
# Parse the response
new_content = json.loads(response.choices[0].message.content)
# Validate minimum length requirements with detailed error messages
length_requirements = {
'reading_passage': 100,
'question_text': 50,
'explanation': 50
}
errors = []
for key, min_length in length_requirements.items():
value = new_content.get(key, '')
current_length = len(value)
if current_length < min_length:
errors.append(f"{key} is too short: {current_length} chars (minimum {min_length} required)")
if errors:
error_message = "\n".join(errors)
raise ValueError(f"Content length requirements not met:\n{error_message}")
# Update the question with new content while preserving other fields
updated_question = question.copy()
updated_question.update(new_content)
# Calculate and log cost
input_tokens = (len(system_message) + len(prompt)) / 4 # Rough estimate: 4 chars per token
output_tokens = len(content) / 4
# o3-mini pricing:
# Input: $1.10 per 1M tokens
# Output: $4.40 per 1M tokens
rewrite_cost = (input_tokens / 1_000_000 * 1.10) + (output_tokens / 1_000_000 * 4.40)
logging.info(f"Estimated cost for rewriting this question: ${rewrite_cost:.6f}")
return updated_question
except json.JSONDecodeError as je:
error_msg = f"Invalid JSON response from LLM: {str(je)}"
logging.error(error_msg)
raise ValueError(error_msg)
except Exception as e:
logging.error(f"Error rewriting question: {str(e)}")
raise e
def display_question(question, index):
"""Display a single question with its details."""
with st.expander(f"Question {index + 1}", expanded=index == 0):
# Add delete and rewrite buttons in the top right corner
col1, col2, col3 = st.columns([5, 1, 1])
# Add prompt input field
prompt = st.text_area(
"Rewrite Instructions",
value="",
placeholder="Enter specific instructions for rewriting this question (e.g., 'include text about renewable energy' or 'make it about space exploration')",
key=f"prompt_{question['id']}"
)
with col2:
if st.button("πŸ”„ Rewrite", key=f"rewrite_{question['id']}", type="primary"):
try:
with st.spinner("Rewriting question..."):
# Rewrite the question with the prompt
updated_question = rewrite_question(question, prompt)
# Update in Supabase
supabase.table("exam_contents").update(updated_question).eq("id", question['id']).execute()
st.success("Question rewritten successfully!")
# Refresh the page
st.rerun()
except Exception as e:
st.error(f"Error rewriting question: {str(e)}")
with col3:
if st.button("πŸ—‘οΈ Delete", key=f"delete_{question['id']}", type="secondary"):
try:
# Delete from Supabase
supabase.table("exam_contents").delete().eq("id", question['id']).execute()
st.success("Question deleted successfully!")
# Add a rerun to refresh the page
st.rerun()
except Exception as e:
st.error(f"Error deleting question: {str(e)}")
# Metadata
with col1:
col_a, col_b, col_c, col_d, col_e = st.columns(5)
with col_a:
st.markdown(f"**Domain:** {question.get('domain', 'N/A')}")
with col_b:
st.markdown(f"**Subdomain:** {question.get('subdomain', 'N/A')}")
with col_c:
st.markdown(f"**Topic:** {question.get('topic', 'N/A')}")
with col_d:
st.markdown(f"**Difficulty:** {question.get('difficulty_level', 'N/A')}")
with col_e:
st.markdown(f"**Source:** {question.get('source_file', 'N/A')}")
# Source text if available
if question.get('source_text'):
st.markdown("### πŸ“„ Source Text")
st.markdown(
f"""<div style='background-color: #e8f4f9; padding: 20px; border-radius: 10px; margin: 10px 0; color: #1f1f1f;'>
{question['source_text']}
</div>""",
unsafe_allow_html=True
)
# Reading passage if available
if question.get('reading_passage'):
st.markdown("### πŸ“– Reading Passage")
st.markdown(
f"""<div style='background-color: #f0f2f6; padding: 20px; border-radius: 10px; margin: 10px 0; color: #1f1f1f;'>
{question['reading_passage']}
</div>""",
unsafe_allow_html=True
)
# Question text and options
st.markdown("### ❓ Question")
st.markdown(f"{question.get('question_text', '')}")
if any(question.get(f'option_{opt}') for opt in ['a', 'b', 'c', 'd']):
st.markdown("### Options")
options_container = st.container()
with options_container:
for opt in ['a', 'b', 'c', 'd']:
if question.get(f'option_{opt}'):
st.markdown(f"**{opt.upper()}.** {question[f'option_{opt}']}")
# Answer and explanation
st.markdown("### Answer & Explanation")
col1, col2 = st.columns(2)
with col1:
st.markdown(
f"""<div style='background-color: #e8f4ea; padding: 10px; border-radius: 5px; margin: 10px 0; color: #1f1f1f;'>
<strong>Correct Answer:</strong> {question.get('correct_answer', 'N/A')}
</div>""",
unsafe_allow_html=True
)
with col2:
if question.get('explanation'):
st.markdown(
f"""<div style='background-color: #fff3e0; padding: 10px; border-radius: 5px; color: #1f1f1f;'>
<strong>Explanation:</strong><br>{question['explanation']}
</div>""",
unsafe_allow_html=True
)
def display_analytics(analytics):
"""Display analytics visualizations."""
st.markdown("""
<h2 style='text-align: center; margin-bottom: 40px;'>πŸ“Š Analytics Dashboard</h2>
""", unsafe_allow_html=True)
# Key Metrics Overview
st.markdown("""
<div style='text-align: center; margin-bottom: 30px;'>
<h3 style='color: #0f4c81;'>Key Metrics</h3>
</div>
""", unsafe_allow_html=True)
metrics_container = st.container()
with metrics_container:
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
st.metric("πŸ“š Total Questions", analytics['total_questions'])
with col2:
st.metric("βœ… Active Questions", analytics['active_questions'])
with col3:
st.metric("❌ Inactive Questions", analytics['inactive_questions'])
with col4:
num_domains = len(analytics['questions_by_domain']) if not analytics['questions_by_domain'].empty else 0
st.metric("🎯 Number of Domains", num_domains)
with col5:
if 'domain_balance_score' in analytics:
balance_score = f"{analytics['domain_balance_score']:.1f}%"
st.metric("βš–οΈ Domain Balance Score", balance_score)
# Content Quality Metrics
if any(key in analytics for key in ['has_explanation', 'complete_options', 'avg_passage_length']):
st.markdown("""
<div style='text-align: center; margin: 30px 0;'>
<h3 style='color: #0f4c81;'>Content Quality Metrics</h3>
</div>
""", unsafe_allow_html=True)
quality_cols = st.columns(3)
with quality_cols[0]:
if 'explanation_ratio' in analytics:
st.metric("πŸ“ Questions with Explanations",
f"{analytics['explanation_ratio']:.1f}%",
help="Percentage of questions that have explanations")
with quality_cols[1]:
if 'options_ratio' in analytics:
st.metric("βœ… Complete Option Sets",
f"{analytics['options_ratio']:.1f}%",
help="Percentage of questions with all 4 options")
with quality_cols[2]:
if 'avg_passage_length' in analytics:
st.metric("πŸ“Š Avg Passage Length",
f"{int(analytics['avg_passage_length'])} chars",
help="Average length of reading passages")
# Time-based Analytics
if 'questions_by_date' in analytics and not analytics['questions_by_date'].empty:
st.markdown("""
<div style='text-align: center; margin: 30px 0;'>
<h3 style='color: #0f4c81;'>Question Generation Timeline</h3>
</div>
""", unsafe_allow_html=True)
# Daily question generation trend
fig_timeline = px.line(
x=analytics['questions_by_date'].index,
y=analytics['questions_by_date'].values,
title="Daily Question Generation",
labels={'x': 'Date', 'y': 'Number of Questions'}
)
fig_timeline.update_layout(showlegend=False)
st.plotly_chart(fig_timeline, use_container_width=True)
# Monthly aggregation
if 'questions_by_month' in analytics and not analytics['questions_by_month'].empty:
fig_monthly = px.bar(
x=analytics['questions_by_month'].index,
y=analytics['questions_by_month'].values,
title="Monthly Question Generation",
labels={'x': 'Month', 'y': 'Number of Questions'}
)
fig_monthly.update_layout(showlegend=False)
st.plotly_chart(fig_monthly, use_container_width=True)
# Questions by Exam Type
if not analytics['questions_by_exam'].empty:
st.markdown("""
<div style='text-align: center; margin: 30px 0;'>
<h3 style='color: #0f4c81;'>Distribution by Exam Type</h3>
</div>
""", unsafe_allow_html=True)
col1, col2, col3 = st.columns([1,3,1])
with col2:
fig = px.pie(
values=analytics['questions_by_exam'].values,
names=analytics['questions_by_exam'].index,
hole=0.4,
color_discrete_sequence=px.colors.qualitative.Set3
)
fig.update_layout(
showlegend=True,
legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="center", x=0.5),
margin=dict(t=60, b=40, l=40, r=40)
)
st.plotly_chart(fig, use_container_width=True)
# Questions by Difficulty
if not analytics['questions_by_difficulty'].empty:
st.markdown("""
<div style='text-align: center; margin: 30px 0;'>
<h3 style='color: #0f4c81;'>Distribution by Difficulty Level</h3>
</div>
""", unsafe_allow_html=True)
col1, col2, col3 = st.columns([1,3,1])
with col2:
fig = px.bar(
x=analytics['questions_by_difficulty'].index,
y=analytics['questions_by_difficulty'].values,
color=analytics['questions_by_difficulty'].index,
color_discrete_sequence=px.colors.qualitative.Set2
)
fig.update_layout(
showlegend=False,
xaxis_title="Difficulty Level",
yaxis_title="Number of Questions",
margin=dict(t=40, b=40, l=40, r=40)
)
st.plotly_chart(fig, use_container_width=True)
# Domain Coverage Analysis
if 'domain_coverage' in analytics and not analytics['domain_coverage'].empty:
st.markdown("""
<div style='text-align: center; margin: 30px 0;'>
<h3 style='color: #0f4c81;'>Domain Coverage Analysis</h3>
</div>
""", unsafe_allow_html=True)
# Domain coverage heatmap
fig_coverage = px.bar(
analytics['domain_coverage'],
x='domain',
y='unique_subdomains',
title="Number of Unique Subdomains per Domain",
color='unique_subdomains',
color_continuous_scale='Viridis'
)
fig_coverage.update_layout(
xaxis_title="Domain",
yaxis_title="Number of Unique Subdomains",
showlegend=False
)
st.plotly_chart(fig_coverage, use_container_width=True)
# Questions by Domain and Subdomain
if not analytics['questions_by_subdomain'].empty and len(analytics['questions_by_subdomain']) > 0:
st.markdown("""
<div style='text-align: center; margin: 30px 0;'>
<h3 style='color: #0f4c81;'>Distribution by Domain and Subdomain</h3>
</div>
""", unsafe_allow_html=True)
fig = px.treemap(
analytics['questions_by_subdomain'],
path=['exam_type', 'domain', 'subdomain'],
values='count',
color='count',
color_continuous_scale='Viridis'
)
fig.update_layout(margin=dict(t=30, b=30, l=30, r=30))
fig.update_traces(textinfo="label+value")
st.plotly_chart(fig, use_container_width=True)
# Recent Activity
if 'recent_activity' in analytics and not analytics['recent_activity'].empty:
st.markdown("""
<div style='text-align: center; margin: 30px 0;'>
<h3 style='color: #0f4c81;'>Recent Activity</h3>
</div>
""", unsafe_allow_html=True)
recent_df = analytics['recent_activity']
st.dataframe(
recent_df[['exam_type', 'domain', 'subdomain', 'difficulty_level', 'created_at']],
hide_index=True,
column_config={
'created_at': 'Timestamp',
'exam_type': 'Exam Type',
'domain': 'Domain',
'subdomain': 'Subdomain',
'difficulty_level': 'Difficulty'
}
)
# Add some spacing at the bottom
st.markdown("<br><br>", unsafe_allow_html=True)
def get_unique_domains():
"""Get unique domains from the database."""
domains = {
"SAT": ["Mathematics", "Reading and Writing"],
"IELTS": ["Reading", "Writing", "Speaking", "Listening"],
"TOEFL": ["Reading", "Listening", "Speaking", "Writing"]
}
return domains
def get_subdomains_for_domain(exam_type: str, domain: str) -> List[str]:
"""Get subdomains for a specific domain by parsing the domain structure."""
parsed_structure = parse_domain_structure(exam_type)
return list(parsed_structure.get(domain, {}).keys())
def parse_domain_structure(exam_type: str) -> dict:
"""Parse the domain structure string into a dictionary format."""
structure = domain_structures.get(exam_type, "")
if not structure:
return {}
result = {}
current_domain = None
current_subdomain = None
for line in structure.split('\n'):
line = line.strip()
if not line:
continue
# Match domain (e.g., "1. Reading and Writing:")
if line[0].isdigit() and line.endswith(':'):
current_domain = line.split('.', 1)[1].split(':', 1)[0].strip()
result[current_domain] = {}
# Match subdomain (e.g., "- Information and Ideas:")
elif line.startswith('-'):
current_subdomain = line[1:].split(':', 1)[0].strip()
result[current_domain][current_subdomain] = []
# Match topic (e.g., "* Central Ideas and Details")
elif line.startswith('*'):
if current_domain and current_subdomain:
topic = line[1:].strip()
result[current_domain][current_subdomain].append(topic)
return result
def get_topics_for_subdomain(exam_type: str, domain: str, subdomain: str) -> List[str]:
"""Get topics for a specific subdomain by parsing the domain structure."""
parsed_structure = parse_domain_structure(exam_type)
return parsed_structure.get(domain, {}).get(subdomain, [])
def get_unique_source_files():
"""Get unique source files from the database, with pagination to retrieve all records."""
try:
source_files = set()
page_size = 1000
current_start = 0
while True:
response = supabase.table("exam_contents").select("source_file").range(current_start, current_start + page_size - 1).execute()
if not response.data:
break
for item in response.data:
if item.get('source_file'):
source_files.add(item['source_file'])
if len(response.data) < page_size:
break
current_start += page_size
return sorted(list(source_files))
except Exception as e:
st.error(f"Error fetching source files: {str(e)}")
return []
# Streamlit Interface
st.title("πŸ“„ PDF to Exam Questions Generator with Supabase Upload")
# Create tabs for different functionalities
tab_upload, tab_view, tab_analytics = st.tabs(["πŸ“€ Upload & Generate", "πŸ” View Questions", "πŸ“Š Analytics"])
with tab_upload:
st.markdown(
"""
Upload PDF files containing exam material, select the exam type, and generate structured questions automatically.
The generated questions will be uploaded to your Supabase database.
**Supported Exam Types**: SAT, IELTS, TOEFL
"""
)
# File uploader and exam type selection
uploaded_files = st.file_uploader("πŸ“₯ Upload PDFs", type=["pdf"], accept_multiple_files=True)
exam_type = st.selectbox(
"πŸ“ Select Exam Type",
options=["SAT", "IELTS", "TOEFL"],
index=0
)
# Generate and Upload Button
if st.button("πŸš€ Generate and Upload Questions"):
if not uploaded_files:
st.error("Please upload at least one PDF file.")
else:
with st.spinner("Processing files..."):
questions_json, download_content = process_pdfs(uploaded_files, exam_type)
if questions_json:
st.success(f"Successfully processed {len(uploaded_files)} files and generated questions!")
st.json(json.loads(questions_json))
# Provide download button
st.download_button(
label="⬇️ Download Questions JSON",
data=download_content,
file_name=f"generated_questions_{uuid.uuid4()}.json",
mime="application/json"
)
with tab_view:
st.subheader("Question Browser")
# Initialize session state
if 'selected_domain' not in st.session_state:
st.session_state.selected_domain = "All"
if 'selected_subdomain' not in st.session_state:
st.session_state.selected_subdomain = "All"
if 'selected_topic' not in st.session_state:
st.session_state.selected_topic = "All"
# Filters
col1, col2, col3 = st.columns(3)
with col1:
view_exam_type = st.selectbox("Exam Type", ["All"] + EXAM_TYPES, key="view_exam_type")
# Get domains based on exam type
domains = ["All"]
if view_exam_type != "All":
domains.extend(get_unique_domains().get(view_exam_type, []))
domain = st.selectbox("Domain", domains, key="domain_select")
# Reset subdomain when domain changes
if domain != st.session_state.get('last_domain'):
st.session_state.selected_subdomain = "All"
st.session_state.last_domain = domain
st.session_state.selected_topic = "All"
with col2:
difficulty = st.selectbox("Difficulty Level", ["All"] + DIFFICULTY_LEVELS)
# Get subdomains based on selected exam type and domain
subdomains = ["All"]
if domain != "All" and view_exam_type != "All":
subdomains.extend(get_subdomains_for_domain(view_exam_type, domain))
subdomain = st.selectbox("Subdomain", subdomains, key="subdomain_select")
# Get topics based on selected exam type, domain, and subdomain
topics = ["All"]
if subdomain != "All" and domain != "All" and view_exam_type != "All":
topics.extend(get_topics_for_subdomain(view_exam_type, domain, subdomain))
topic = st.selectbox("Topic", topics, key="topic_select")
with col3:
# Add source file filter
source_files = ["All"] + get_unique_source_files()
source_file = st.selectbox("πŸ“š Source Book/PDF", source_files, help="Filter questions by their source PDF file")
# Apply filters
filters = {
'exam_type': view_exam_type if view_exam_type != "All" else None,
'difficulty_level': difficulty if difficulty != "All" else None,
'domain': domain if domain != "All" else None,
'subdomain': subdomain if subdomain != "All" else None,
'topic': topic if topic != "All" else None,
'source_file': source_file if source_file != "All" else None
}
# Remove None values from filters
filters = {k: v for k, v in filters.items() if v is not None}
# Get filtered questions
questions = get_questions(filters)
if not questions:
st.info("No questions found matching the selected filters.")
else:
st.success(f"Found {len(questions)} questions")
# Add search functionality
search_query = st.text_input("πŸ” Search questions", placeholder="Enter keywords to search in questions, passages, or options...")
if search_query:
# Filter questions based on search query
filtered_questions = []
search_terms = search_query.lower().split()
for question in questions:
searchable_text = (
f"{question.get('question_text', '')} "
f"{question.get('reading_passage', '')} "
f"{question.get('option_a', '')} "
f"{question.get('option_b', '')} "
f"{question.get('option_c', '')} "
f"{question.get('option_d', '')}"
).lower()
# Check if all search terms are present in the searchable text
if all(term in searchable_text for term in search_terms):
filtered_questions.append(question)
questions = filtered_questions
if not questions:
st.warning(f"No questions found matching the search term: '{search_query}'")
else:
st.success(f"Found {len(questions)} questions matching your search")
# Pagination
questions_per_page = 10
if 'current_page' not in st.session_state:
st.session_state.current_page = 1
total_pages = (len(questions) + questions_per_page - 1) // questions_per_page
# Calculate start and end indices for current page
start_idx = (st.session_state.current_page - 1) * questions_per_page
end_idx = min(start_idx + questions_per_page, len(questions))
# Display current page questions
for i, question in enumerate(questions[start_idx:end_idx], start=start_idx):
display_question(question, i)
# Pagination controls
col1, col2, col3 = st.columns([1, 2, 1])
with col1:
if st.session_state.current_page > 1:
if st.button("← Previous"):
st.session_state.current_page -= 1
st.rerun()
with col2:
st.write(f"Page {st.session_state.current_page} of {total_pages}")
with col3:
if st.session_state.current_page < total_pages:
if st.button("Next β†’"):
st.session_state.current_page += 1
st.rerun()
with tab_analytics:
# Get all questions for analytics
all_questions = get_questions()
analytics = get_analytics_data(all_questions)
# Add source file management section
st.markdown("""
<div style='text-align: center; margin: 30px 0;'>
<h3 style='color: #0f4c81;'>πŸ“š Source File Management</h3>
</div>
""", unsafe_allow_html=True)
# Get unique source files
source_files = get_unique_source_files()
if not source_files:
st.info("No source files found in the database.")
else:
# Create a container for the source files
with st.container():
# Display source files in a grid
cols = st.columns(3)
for idx, source_file in enumerate(source_files):
col = cols[idx % 3]
with col:
# Count questions for this source file
question_count = len([q for q in all_questions if q.get('source_file') == source_file])
# Create an expander for each source file
with st.expander(f"πŸ“– {source_file}", expanded=False):
st.markdown(f"**Questions:** {question_count}")
# Add delete button with confirmation
if st.button(f"πŸ—‘οΈ Delete", key=f"delete_{source_file}"):
confirm_key = f"confirm_{source_file}"
if confirm_key not in st.session_state:
st.session_state[confirm_key] = False
if not st.session_state[confirm_key]:
st.warning(f"Are you sure you want to delete all questions from {source_file}?")
col1, col2 = st.columns(2)
with col1:
if st.button("βœ… Yes", key=f"yes_{source_file}"):
try:
# Delete all questions with this source file
response = supabase.table("exam_contents")\
.delete()\
.eq("source_file", source_file)\
.execute()
if response.data:
st.success(f"Successfully deleted all questions from {source_file}")
st.session_state[confirm_key] = True
# Rerun to refresh the page
st.rerun()
else:
st.error("Failed to delete questions")
except Exception as e:
st.error(f"Error deleting questions: {str(e)}")
with col2:
if st.button("❌ No", key=f"no_{source_file}"):
st.session_state[confirm_key] = True
st.rerun()
# Add spacing before analytics
st.markdown("<br><br>", unsafe_allow_html=True)
# Display analytics
display_analytics(analytics)
st.markdown(
"""
---
**Note**: This application uses OpenAI services to generate exam questions and uploads them to Supabase. Ensure that your API credentials are correctly set in the environment variables.
"""
)