File size: 20,903 Bytes
fe12823
1be431a
 
 
 
 
42fb43c
1be431a
 
 
 
 
 
 
 
 
4ffd446
d176253
 
 
d53b62d
6af6f76
231a868
c2db75c
6af6f76
 
d176253
 
 
 
 
 
 
 
 
 
 
 
1be431a
 
 
 
 
6d6d84c
1be431a
 
 
 
 
 
 
 
 
 
 
 
206753b
1be431a
 
 
 
 
 
 
 
 
 
6d6d84c
1be431a
 
6d6d84c
1be431a
 
 
 
 
 
 
 
 
 
c7ad932
1be431a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe12823
 
1be431a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7ad932
 
 
 
 
 
 
 
 
 
 
1be431a
c7ad932
1be431a
 
 
 
 
 
 
 
 
 
c7ad932
 
 
 
1be431a
 
d4ada6d
1be431a
 
 
 
 
 
 
 
 
3d16af9
1be431a
 
 
72fe634
1be431a
9545dbd
147e661
72fe634
1be431a
7eab9da
147e661
72fe634
1be431a
d53b62d
 
922dd7d
d53b62d
cf6e402
 
 
 
1be431a
566b7f7
 
 
 
1be431a
dd505ce
 
 
 
1be431a
16a43bc
 
 
6af6f76
4df475b
6af6f76
 
 
a17017c
 
f293a91
a17017c
c10af95
a17017c
f293a91
a17017c
c10af95
6af6f76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65029fb
 
 
6af6f76
d53b62d
20f67e4
 
 
 
 
 
 
6af6f76
1be431a
20f67e4
 
 
c10af95
20f67e4
 
 
 
 
1be431a
 
20f67e4
 
 
 
 
 
 
 
 
1be431a
6d6d84c
6af6f76
 
 
a17017c
 
 
 
65029fb
a17017c
 
a1420b8
6af6f76
a17017c
 
 
 
6af6f76
 
 
 
 
 
 
 
 
 
 
2da9742
25a20c0
6af6f76
25a20c0
1be431a
 
 
 
c38b78d
6d6d84c
 
 
 
c38b78d
 
 
 
1be431a
 
 
6d6d84c
 
1be431a
fd45959
1be431a
 
 
 
 
 
 
 
c38b78d
ee92837
6d6d84c
1be431a
 
 
 
 
 
 
 
 
8dcf476
6d6d84c
d53b62d
c38b78d
1be431a
c38b78d
 
 
 
d53b62d
c38b78d
1be431a
 
 
 
 
16a43bc
3cc1430
953f88a
c99be96
 
16a43bc
3cc1430
1be431a
4ffd446
 
 
 
 
 
 
 
d176253
 
 
 
16a43bc
d176253
 
8dcf476
d176253
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1be431a
 
3f7f887
1be431a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2da9742
1be431a
 
 
3f7f887
1be431a
 
4ffd446
 
 
 
 
16a43bc
 
 
1be431a
 
6d6d84c
1be431a
6d6d84c
 
 
d176253
6d6d84c
 
8dcf476
d53b62d
 
 
 
 
6d6d84c
 
 
 
 
 
1be431a
 
 
 
 
 
fd45959
 
 
 
 
 
1be431a
 
 
 
 
 
d53b62d
 
1be431a
 
 
 
 
 
 
 
 
 
 
16a43bc
1be431a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42f39c4
1be431a
 
 
 
 
 
 
 
 
d176253
 
 
8dcf476
d176253
 
16a43bc
1be431a
 
6d6d84c
 
1be431a
fd45959
1be431a
 
 
 
 
 
 
 
 
 
 
 
8dcf476
d53b62d
1be431a
 
 
 
 
 
6d6d84c
1be431a
 
 
 
 
 
 
d53b62d
 
 
 
 
 
 
1be431a
e611170
1be431a
6d6d84c
1be431a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d176253
 
 
 
 
 
 
1be431a
 
89d0a2c
f53c349
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
from utils import cosineSim, googleSearch, getSentences, parallel_scrap, matchingScore, matchingScoreWithTimeout
import gradio as gr
from urllib.request import urlopen, Request
from googleapiclient.discovery import build
import requests
import httpx
import torch
import re
from bs4 import BeautifulSoup
import numpy as np
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import asyncio
from scipy.special import softmax
from evaluate import load
from datetime import date
import nltk
import fitz 
from transformers import GPT2LMHeadModel, GPT2TokenizerFast
import nltk, spacy, subprocess, torch
import plotly.graph_objects as go
import torch.nn.functional as F
import nltk
from unidecode import unidecode
 
nltk.download('punkt')

from writing_analysis import (
    normalize,
    preprocess_text1,
    preprocess_text2, 
    vocabulary_richness_ttr,
    calculate_gunning_fog,
    calculate_average_sentence_length,
    calculate_average_word_length,
    calculate_syntactic_tree_depth,
    calculate_perplexity,

    )

np.set_printoptions(suppress=True)


def plagiarism_check(
    plag_option,
    input,
    year_from,
    month_from,
    day_from,
    year_to,
    month_to,
    day_to,
    domains_to_skip,
):
    api_key = "AIzaSyCLyCCpOPLZWuptuPAPSg8cUIZhdEMVf6g"
    api_key = "AIzaSyCS1WQDMl1IMjaXtwSd_2rA195-Yc4psQE"
    api_key = "AIzaSyCB61O70B8AC3l5Kk3KMoLb6DN37B7nqIk"
    # api_key = "AIzaSyCg1IbevcTAXAPYeYreps6wYWDbU0Kz8tg"
    cse_id = "851813e81162b4ed4"

    sentences = getSentences(input)
    urlCount = {}
    ScoreArray = []
    urlList = []

    date_from = build_date(year_from, month_from, day_from)
    date_to = build_date(year_to, month_to, day_to)
    sort_date = f"date:r:{date_from}:{date_to}"

    # get list of URLS to check
    urlCount, ScoreArray = googleSearch(
        plag_option,
        sentences,
        urlCount,
        ScoreArray,
        urlList,
        sort_date,
        domains_to_skip,
        api_key,
        cse_id,
    )
    print("Number of URLs: ", len(urlCount))
    print(urlList)

    # Scrape URLs in list
    formatted_tokens = []
    soups = asyncio.run(parallel_scrap(urlList))
    print(len(soups))
    print(
        "Successful scraping: "
        + str(len([x for x in soups if x is not None]))
        + "out of "
        + str(len(urlList))
    )

    # Populate matching scores for scrapped pages
    for i, soup in enumerate(soups):
        print(f"Analyzing {i+1} of {len(soups)} soups........................")
        if soup:
            page_content = soup.text
            for j, sent in enumerate(sentences):
                # score = matchingScore(sent, page_content)
                score = matchingScoreWithTimeout(sent, page_content)
                ScoreArray[i][j] = score

    # ScoreArray = asyncio.run(parallel_analyze_2(soups, sentences, ScoreArray))
    # print("New Score Array:\n")
    # print2D(ScoreArray)

    # Gradio formatting section
    sentencePlag = [False] * len(sentences)
    sentenceToMaxURL = [-1] * len(sentences)
    for j in range(len(sentences)):
        if j > 0:
            maxScore = ScoreArray[sentenceToMaxURL[j - 1]][j]
            sentenceToMaxURL[j] = sentenceToMaxURL[j - 1]
        else:
            maxScore = -1
        for i in range(len(ScoreArray)):
            margin = (
                0.1
                if (j > 0 and sentenceToMaxURL[j] == sentenceToMaxURL[j - 1])
                else 0
            )
            if ScoreArray[i][j] - maxScore > margin:
                maxScore = ScoreArray[i][j]
                sentenceToMaxURL[j] = i
        if maxScore > 0.5:
            sentencePlag[j] = True
    
    if (
        (len(sentences) > 1)
        and (sentenceToMaxURL[1] != sentenceToMaxURL[0])
        and (
            ScoreArray[sentenceToMaxURL[0]][0]
            - ScoreArray[sentenceToMaxURL[1]][0]
            < 0.1
        )
    ):
        sentenceToMaxURL[0] = sentenceToMaxURL[1]

    index = np.unique(sentenceToMaxURL)

    urlScore = {}
    for url in index:
        s = [
            ScoreArray[url][sen]
            for sen in range(len(sentences))
            if sentenceToMaxURL[sen] == url
        ]
        urlScore[url] = sum(s) / len(s)

    index_descending = sorted(urlScore, key=urlScore.get, reverse=True)

    urlMap = {}
    for count, i in enumerate(index_descending):
        urlMap[i] = count + 1
    for i, sent in enumerate(sentences):
        formatted_tokens.append(
            (sent, "[" + str(urlMap[sentenceToMaxURL[i]]) + "]")
        )

    formatted_tokens.append(("\n", None))
    formatted_tokens.append(("\n", None))
    formatted_tokens.append(("\n", None))

    print(formatted_tokens)
    print(index_descending)
    
    for ind in index_descending:
        formatted_tokens.append(
            (
                urlList[ind] + " --- Matching Score: " + f"{str(round(urlScore[ind] * 100, 2))}%",
                "[" + str(urlMap[ind]) + "]",
            )
        )
        formatted_tokens.append(("\n", None))

    print(f"Formatted Tokens: {formatted_tokens}")

    return formatted_tokens

  
"""
AI DETECTION SECTION
"""
device = "cuda" if torch.cuda.is_available() else "cpu"

text_bc_model_path = "polygraf-ai/text-detect-bc-v11-4m"
text_bc_tokenizer = AutoTokenizer.from_pretrained(text_bc_model_path)
text_bc_model = AutoModelForSequenceClassification.from_pretrained(text_bc_model_path).to(device)

text_mc_model_path = "polygraf-ai/ai-text-detection-mc-robert-open-ai-detector-v4"
text_mc_tokenizer = AutoTokenizer.from_pretrained(text_mc_model_path)
text_mc_model = AutoModelForSequenceClassification.from_pretrained(text_mc_model_path).to(device)

quillbot_labels = ["Original", "QuillBot"]
quillbot_tokenizer = AutoTokenizer.from_pretrained("FacebookAI/roberta-base")
quillbot_model = AutoModelForSequenceClassification.from_pretrained("polygraf-ai/quillbot-detector-28k").to(device)

def remove_accents(input_str):
    text_no_accents = unidecode(input_str)
    return text_no_accents

def remove_special_characters(text):
    text = remove_accents(text)
    pattern = r'[^\w\s\d.,!?\'"()-;]+'
    text = re.sub(pattern, '', text)
    return text

def remove_special_characters_2(text):
    pattern = r'[^a-zA-Z0-9 ]+'
    text = re.sub(pattern, '', text)
    return text

def update_character_count(text):
    return f"{len(text)} characters"


def split_text_allow_complete_sentences_nltk(text, max_length=256, tolerance=30, min_last_segment_length=100, type_det='bc'):
    sentences = nltk.sent_tokenize(text)
    segments = []
    current_segment = []
    current_length = 0 
    
    if type_det == 'bc':
        tokenizer = text_bc_tokenizer
        max_length = 333
        
    elif type_det == 'mc':
        tokenizer = text_mc_tokenizer
        max_length = 256
    
    for sentence in sentences:
        tokens = tokenizer.tokenize(sentence)
        sentence_length = len(tokens)
        
        if current_length + sentence_length <= max_length + tolerance - 2: 
            current_segment.append(sentence)
            current_length += sentence_length
        else:
            if current_segment:
                encoded_segment = tokenizer.encode(' '.join(current_segment), add_special_tokens=True, max_length=max_length+tolerance, truncation=True)
                segments.append((current_segment, len(encoded_segment)))
            current_segment = [sentence]
            current_length = sentence_length
    
    if current_segment:
        encoded_segment = tokenizer.encode(' '.join(current_segment), add_special_tokens=True, max_length=max_length+tolerance, truncation=True)
        segments.append((current_segment, len(encoded_segment)))

    final_segments = []
    for i, (seg, length) in enumerate(segments):
        if i == len(segments) - 1:  
            if length < min_last_segment_length and len(final_segments) > 0:
                prev_seg, prev_length = final_segments[-1]
                combined_encoded = tokenizer.encode(' '.join(prev_seg + seg), add_special_tokens=True, max_length=max_length+tolerance, truncation=True)
                if len(combined_encoded) <= max_length + tolerance:
                    final_segments[-1] = (prev_seg + seg, len(combined_encoded))
                else:
                    final_segments.append((seg, length))
            else:
                final_segments.append((seg, length))
        else:
            final_segments.append((seg, length))

    decoded_segments = []
    encoded_segments = []
    for seg, _ in final_segments:
        encoded_segment = tokenizer.encode(' '.join(seg), add_special_tokens=True, max_length=max_length+tolerance, truncation=True)
        decoded_segment = tokenizer.decode(encoded_segment)
        decoded_segments.append(decoded_segment)
    return decoded_segments

def predict_quillbot(text):
    with torch.no_grad():
        quillbot_model.eval()
        tokenized_text = quillbot_tokenizer(text, padding="max_length", truncation=True, max_length=256, return_tensors="pt").to(device)
        output = quillbot_model(**tokenized_text)
        output_norm = softmax(output.logits.detach().cpu().numpy(), 1)[0]
        q_score = {"QuillBot": output_norm[1].item(), "Original": output_norm[0].item()}
        return q_score

def predict_bc(model, tokenizer, text):
    with torch.no_grad():
        model.eval()
        tokens = text_bc_tokenizer(
            text, padding='max_length', truncation=True, max_length=333, return_tensors="pt"
        ).to(device)
        output = model(**tokens)
        output_norm = softmax(output.logits.detach().cpu().numpy(), 1)[0]
        print("BC Score: ", output_norm)
        return output_norm

def predict_mc(model, tokenizer, text):
    with torch.no_grad():
        model.eval()
        tokens = text_mc_tokenizer(
            text, padding='max_length', truncation=True, return_tensors="pt", max_length=256
        ).to(device)
        output = model(**tokens)
        output_norm = softmax(output.logits.detach().cpu().numpy(), 1)[0]
        print("MC Score: ", output_norm)
        return output_norm

def ai_generated_test(ai_option, input):
    
    bc_scores = []
    mc_scores = []
    samples_len_bc = len(split_text_allow_complete_sentences_nltk(input, type_det = 'bc'))
    samples_len_mc = len(split_text_allow_complete_sentences_nltk(input, type_det = 'mc'))
    segments_bc = split_text_allow_complete_sentences_nltk(input, type_det = 'bc')
    segments_mc = split_text_allow_complete_sentences_nltk(input, type_det = 'bc')
    
    for i in range(samples_len_bc):
        cleaned_text_bc = remove_special_characters(segments_bc[i])
        bc_score = predict_bc(text_bc_model, text_bc_tokenizer,cleaned_text_bc )
        bc_scores.append(bc_score)
        
    for i in range(samples_len_mc):
        cleaned_text_mc = remove_special_characters(segments_mc[i])
        mc_score = predict_mc(text_mc_model, text_mc_tokenizer, cleaned_text_mc)
        mc_scores.append(mc_score)

    bc_scores_array = np.array(bc_scores)
    mc_scores_array = np.array(mc_scores)
    average_bc_scores = np.mean(bc_scores_array, axis=0)
    average_mc_scores = np.mean(mc_scores_array, axis=0)
    bc_score_list = average_bc_scores.tolist()
    mc_score_list = average_mc_scores.tolist()
    
    bc_score = {"AI": bc_score[1].item(), "HUMAN": bc_score[0].item()}
    mc_score = {}
    label_map = ["OpenAI GPT", "Mistral", "CLAUDE", "Gemini", "LLAMA 2"]
    
    for score, label in zip(mc_score_list, label_map):
        mc_score[label.upper()] = score
    
    sum_prob = 1 - bc_score["HUMAN"]
    for key, value in mc_score.items():
        mc_score[key] = value * sum_prob
    
    if ai_option == "Human vs AI":
        mc_score = {}

    if sum_prob < 0.01  :
        mc_score = {}
        return bc_score, mc_score
    else:
        return bc_score, mc_score

# COMBINED
def main(
    ai_option,
    plag_option,
    input,
    # models,
    year_from,
    month_from,
    day_from,
    year_to,
    month_to,
    day_to,
    domains_to_skip,
):

    formatted_tokens = plagiarism_check(
        plag_option,
        input,
        year_from,
        month_from,
        day_from,
        year_to,
        month_to,
        day_to,
        domains_to_skip,
    )
    depth_analysis_plot = depth_analysis(input)
    bc_score, mc_score = ai_generated_test(ai_option,input)
    quilscore = predict_quillbot(input)
    
    return (
    bc_score,
    mc_score,
    formatted_tokens,
    depth_analysis_plot,
    quilscore
            )


def build_date(year, month, day):
    return f"{year}{months[month]}{day}"

def len_validator(text):
    min_tokens = 200  
    lengt = len(text_bc_tokenizer.tokenize(text = text, return_tensors="pt"))
    if  lengt < min_tokens:
        return f"Warning! Input length is {lengt}. Please input a text that is greater than {min_tokens} tokens long. Recommended length {min_tokens*2} tokens." 
    else :
        return f"Input length ({lengt}) is satisified." 

def extract_text_from_pdf(pdf_path):
    doc = fitz.open(pdf_path)
    text = ""
    for page in doc:
        text += page.get_text()
    return text


# DEPTH ANALYSIS
print("loading depth analysis")
nltk.download('stopwords')
nltk.download('punkt')
command = ['python3', '-m', 'spacy', 'download', 'en_core_web_sm']
# Execute the command
subprocess.run(command)
nlp = spacy.load("en_core_web_sm")

# for perplexity
model_id = "gpt2"
gpt2_model = GPT2LMHeadModel.from_pretrained(model_id).to(device)
gpt2_tokenizer = GPT2TokenizerFast.from_pretrained(model_id)

def depth_analysis(input_text):

    # vocanulary richness
    processed_words = preprocess_text1(input_text)
    ttr_value = vocabulary_richness_ttr(processed_words)

    # readability
    gunning_fog = calculate_gunning_fog(input_text)
    gunning_fog_norm = normalize(gunning_fog, min_value=0, max_value=20)
    
    # average sentence length and average word length
    words, sentences = preprocess_text2(input_text)
    average_sentence_length = calculate_average_sentence_length(sentences)
    average_word_length = calculate_average_word_length(words)
    average_sentence_length_norm = normalize(average_sentence_length, min_value=0, max_value=40)
    average_word_length_norm = normalize(average_word_length, min_value=0, max_value=8)

    # syntactic_tree_depth
    average_tree_depth = calculate_syntactic_tree_depth(nlp, input_text)
    average_tree_depth_norm = normalize(average_tree_depth, min_value=0, max_value=10)

    # perplexity
    perplexity = calculate_perplexity(input_text, gpt2_model, gpt2_tokenizer, device)
    perplexity_norm = normalize(perplexity, min_value=0, max_value=30)

    features = {
        "readability": gunning_fog_norm, 
        "syntactic tree depth": average_tree_depth_norm,
        "vocabulary richness": ttr_value,
        "perplexity": perplexity_norm,
        "average sentence length": average_sentence_length_norm,
        "average word length": average_word_length_norm, 
    }

    print(features)

    fig = go.Figure()

    fig.add_trace(go.Scatterpolar(
        r=list(features.values()),
        theta=list(features.keys()),
        fill='toself',
        name='Radar Plot'
    ))

    fig.update_layout(
        polar=dict(
            radialaxis=dict(
                visible=True,
                range=[0, 100],
            )),
        showlegend=False,
        # autosize=False,
        # width=600,
        # height=600,
        margin=dict(
            l=10,
            r=20,
            b=10,
            t=10,
            # pad=100
        ),
    )

    return fig


# START OF GRADIO

title = "Copyright Checker"
months = {
    "January": "01",
    "February": "02",
    "March": "03",
    "April": "04",
    "May": "05",
    "June": "06",
    "July": "07",
    "August": "08",
    "September": "09",
    "October": "10",
    "November": "11",
    "December": "12",
}


with gr.Blocks() as demo:
    today = date.today()
    # dd/mm/YY
    d1 = today.strftime("%d/%B/%Y")
    d1 = d1.split("/")

    model_list = ["OpenAI GPT", "Mistral", "CLAUDE", "Gemini", "LLAMA2"]
    domain_list = ["com", "org", "net", "int", "edu", "gov", "mil"]
    gr.Markdown(
        """
    # Copyright Checker 
    """
    )
    with gr.Row():
        input_text = gr.Textbox(label="Input text", lines=6, placeholder="")
        file_input = gr.File(label="Upload PDF")
        file_input.change(fn=extract_text_from_pdf, inputs=file_input, outputs=input_text)

    char_count = gr.Textbox(label="Minumum Character Limit Check") 
    input_text.change(fn=len_validator, inputs=input_text, outputs=char_count)

    with gr.Row():
        with gr.Column():
            ai_option = gr.Radio(["Human vs AI", "Human vs AI Source Models"], label="Choose an option please.")
        with gr.Column():
            plag_option = gr.Radio(["Standard", "Advanced"], label="Choose an option please.")

    with gr.Row():
        with gr.Column():
            only_ai_btn = gr.Button("AI Check")

        with gr.Column():
            only_plagiarism_btn = gr.Button("Source Check")

    with gr.Row():
        quillbot_check = gr.Button("Humanized Text Check (Quillbot)")

    with gr.Row():
        depth_analysis_btn = gr.Button("Detailed Writing Analysis")

    with gr.Row():
        full_check_btn = gr.Button("Full Check")

    gr.Markdown(
        """
        ## Output
        """
    )
    
    # models = gr.Dropdown(
            # model_list,
            # value=model_list,
            # multiselect=True,
            # label="Models to test against",
        # )
    
    with gr.Row():
        with gr.Column():
            bcLabel = gr.Label(label="Source")
        with gr.Column():
            mcLabel = gr.Label(label="Creator")
    with gr.Row():
        QLabel = gr.Label(label="Humanized")
    with gr.Group():
        with gr.Row():
            month_from = gr.Dropdown(
                choices=months,
                label="From Month",
                value="January",
                interactive=True,
            )
            day_from = gr.Textbox(label="From Day", value="01")
            year_from = gr.Textbox(label="From Year", value="2000")
            # from_date_button = gr.Button("Submit")

        with gr.Row():
            month_to = gr.Dropdown(
                choices=months,
                label="To Month",
                value=d1[1],
                interactive=True,
            )
            day_to = gr.Textbox(label="To Day", value=d1[0])
            year_to = gr.Textbox(label="To Year", value=d1[2])
            # to_date_button = gr.Button("Submit")
        with gr.Row():
            domains_to_skip = gr.Dropdown(
                domain_list,
                multiselect=True,
                label="Domain To Skip",
            )

    with gr.Row():
        with gr.Column():
            sentenceBreakdown = gr.HighlightedText(
                label="Source Detection Sentence Breakdown",
                combine_adjacent=True,
                color_map={
                    "[1]": "red",
                    "[2]": "orange",
                    "[3]": "yellow",
                    "[4]": "green",
                },
            )

    with gr.Row():
        with gr.Column():
            writing_analysis_plot = gr.Plot(
                label="Writing Analysis Plot"
            )

    full_check_btn.click(
        fn=main,
        inputs=[
            ai_option,
            plag_option,
            input_text,
            # models,
            year_from,
            month_from,
            day_from,
            year_to,
            month_to,
            day_to,
            domains_to_skip,
        ],
        outputs=[
            bcLabel,
            mcLabel,
            sentenceBreakdown,
            writing_analysis_plot,
            QLabel
        ],
        api_name="main",
    )

    only_ai_btn.click(
        fn=ai_generated_test,
        inputs=[ai_option, input_text],
        outputs=[
            bcLabel,
            mcLabel,
        ],
        api_name="ai_check",
    )

    quillbot_check.click(
        fn=predict_quillbot,
        inputs=[input_text],
        outputs=[QLabel],
        api_name="quillbot_check",
    )

    only_plagiarism_btn.click(
        fn=plagiarism_check,
        inputs=[
            plag_option,
            input_text,
            year_from,
            month_from,
            day_from,
            year_to,
            month_to,
            day_to,
            domains_to_skip,
        ],
        outputs=[
            sentenceBreakdown,
        ],
        api_name="plagiarism_check",
    )

    depth_analysis_btn.click(
        fn=depth_analysis,
        inputs=[input_text],
        outputs=[writing_analysis_plot],
        api_name="depth_analysis",
    )

    date_from = ""
    date_to = ""
  
demo.launch(share=True, server_name="0.0.0.0", auth=("polygraf-admin", "test@aisd"))