copyright_checker / utils.py
minko186's picture
refactoring
45d10c4
raw
history blame
11 kB
from urllib.request import urlopen, Request
from googleapiclient.discovery import build
import requests
import httpx
import re
from bs4 import BeautifulSoup
import re, math
from collections import Counter
import numpy as np
import asyncio
import nltk
from sentence_transformers import SentenceTransformer, util
import threading
import torch
import re
import numpy as np
import asyncio
from datetime import date
import nltk
from unidecode import unidecode
from scipy.special import softmax
from transformers import AutoTokenizer
import yaml
import fitz
import os
def remove_accents(input_str):
text_no_accents = unidecode(input_str)
return text_no_accents
def remove_special_characters(text):
text = remove_accents(text)
pattern = r'[^\w\s\d.,!?\'"()-;]+'
text = re.sub(pattern, "", text)
return text
def remove_special_characters_2(text):
pattern = r"[^a-zA-Z0-9 ]+"
text = re.sub(pattern, "", text)
return text
def update_character_count(text):
return f"{len(text)} characters"
nltk.download("punkt")
with open("config.yaml", "r") as file:
params = yaml.safe_load(file)
text_bc_model_path = params["TEXT_BC_MODEL_PATH"]
text_bc_tokenizer = AutoTokenizer.from_pretrained(text_bc_model_path)
def len_validator(text):
min_tokens = 200
lengt = len(text_bc_tokenizer.tokenize(text=text, return_tensors="pt"))
if lengt < min_tokens:
return f"Warning! Input length is {lengt}. Please input a text that is greater than {min_tokens} tokens long. Recommended length {min_tokens*2} tokens."
else:
return f"Input length ({lengt}) is satisified."
def extract_text_from_pdf(pdf_path):
doc = fitz.open(pdf_path)
text = ""
for page in doc:
text += page.get_text()
return text
WORD = re.compile(r"\w+")
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
# returns cosine similarity of two vectors
# input: two vectors
# output: integer between 0 and 1.
# def get_cosine(vec1, vec2):
# intersection = set(vec1.keys()) & set(vec2.keys())
# # calculating numerator
# numerator = sum([vec1[x] * vec2[x] for x in intersection])
# # calculating denominator
# sum1 = sum([vec1[x] ** 2 for x in vec1.keys()])
# sum2 = sum([vec2[x] ** 2 for x in vec2.keys()])
# denominator = math.sqrt(sum1) * math.sqrt(sum2)
# # checking for divide by zero
# if denominator == 0:
# return 0.0
# else:
# return float(numerator) / denominator
# # converts given text into a vector
# def text_to_vector(text):
# # uses the Regular expression above and gets all words
# words = WORD.findall(text)
# # returns a counter of all the words (count of number of occurences)
# return Counter(words)
# # returns cosine similarity of two words
# # uses: text_to_vector(text) and get_cosine(v1,v2)
# def cosineSim(text1, text2):
# vector1 = text_to_vector(text1)
# vector2 = text_to_vector(text2)
# # print vector1,vector2
# cosine = get_cosine(vector1, vector2)
# return cosine
# def cos_sim_torch(embedding_1, embedding_2):
# return util.pytorch_cos_sim(embedding_1, embedding_2).item()
# def embed_text(text):
# return model.encode(text, convert_to_tensor=True)
# def sentence_similarity(text1, text2):
# embedding_1 = model.encode(text1, convert_to_tensor=True)
# embedding_2 = model.encode(text2, convert_to_tensor=True)
# o = util.pytorch_cos_sim(embedding_1, embedding_2)
# return o.item()
# def get_soup_requests(url):
# page = requests.get(url)
# if page.status_code == 200:
# soup = BeautifulSoup(page.content, "html.parser")
# return soup
# print("HTML soup failed")
# return None
# def get_soup_httpx(url):
# client = httpx.Client(timeout=30)
# try:
# page = client.get(url)
# if page.status_code == httpx.codes.OK:
# soup = BeautifulSoup(page.content, "html.parser")
# return soup
# except:
# print("HTTPx soup failed")
# return None
# def getSentences(text):
# from nltk.tokenize import sent_tokenize
# sents = sent_tokenize(text)
# two_sents = []
# for i in range(len(sents)):
# if (i % 2) == 0:
# two_sents.append(sents[i])
# else:
# two_sents[len(two_sents) - 1] += " " + sents[i]
# return two_sents
# def googleSearch(
# plag_option,
# sentences,
# urlCount,
# scoreArray,
# urlList,
# sorted_date,
# domains_to_skip,
# api_key,
# cse_id,
# **kwargs,
# ):
# service = build("customsearch", "v1", developerKey=api_key)
# for i, sentence in enumerate(sentences):
# results = (
# service.cse()
# .list(q=sentence, cx=cse_id, sort=sorted_date, **kwargs)
# .execute()
# )
# if "items" in results and len(results["items"]) > 0:
# for count, link in enumerate(results["items"]):
# # stop after 3 pages
# if count >= 3:
# break
# # skip user selected domains
# if any(
# ("." + domain) in link["link"] for domain in domains_to_skip
# ):
# continue
# # clean up snippet of '...'
# snippet = link["snippet"]
# ind = snippet.find("...")
# if ind < 20 and ind > 9:
# snippet = snippet[ind + len("... ") :]
# ind = snippet.find("...")
# if ind > len(snippet) - 5:
# snippet = snippet[:ind]
# # update cosine similarity between snippet and given text
# url = link["link"]
# if url not in urlList:
# urlList.append(url)
# scoreArray.append([0] * len(sentences))
# urlCount[url] = urlCount[url] + 1 if url in urlCount else 1
# if plag_option == "Standard":
# scoreArray[urlList.index(url)][i] = cosineSim(
# sentence, snippet
# )
# else:
# scoreArray[urlList.index(url)][i] = sentence_similarity(
# sentence, snippet
# )
# else:
# print("Google Search failed")
# return urlCount, scoreArray
# def getQueries(text, n):
# # return n-grams of size n
# words = text.split()
# return [words[i : i + n] for i in range(len(words) - n + 1)]
# def print2D(array):
# print(np.array(array))
# def removePunc(text):
# res = re.sub(r"[^\w\s]", "", text)
# return res
# async def get_url_data(url, client):
# try:
# r = await client.get(url)
# # print(r.status_code)
# if r.status_code == 200:
# # print("in")
# soup = BeautifulSoup(r.content, "html.parser")
# return soup
# except Exception:
# print("HTTPx parallel soup failed")
# return None
# async def parallel_scrap(urls):
# async with httpx.AsyncClient(timeout=30) as client:
# tasks = []
# for url in urls:
# tasks.append(get_url_data(url=url, client=client))
# results = await asyncio.gather(*tasks, return_exceptions=True)
# return results
# class TimeoutError(Exception):
# pass
# def matchingScore(sentence, content):
# if sentence in content:
# return 1
# sentence = removePunc(sentence)
# content = removePunc(content)
# if sentence in content:
# return 1
# else:
# n = 5
# ngrams = getQueries(sentence, n)
# if len(ngrams) == 0:
# return 0
# matched = [x for x in ngrams if " ".join(x) in content]
# return len(matched) / len(ngrams)
# # def matchingScoreWithTimeout(sentence, content):
# # def timeout_handler():
# # raise TimeoutError("Function timed out")
# # timer = threading.Timer(10, timeout_handler) # Set a timer for 2 seconds
# # timer.start()
# # try:
# # score = sentence_similarity(sentence, content)
# # # score = matchingScore(sentence, content)
# # timer.cancel() # Cancel the timer if calculation completes before timeout
# # return score
# # except TimeoutError:
# # return 0
# # async def matchingScoreAsync(sentences, content, content_idx, ScoreArray):
# # content = removePunc(content)
# # for j, sentence in enumerate(sentences):
# # sentence = removePunc(sentence)
# # if sentence in content:
# # ScoreArray[content_idx][j] = 1
# # else:
# # n = 5
# # ngrams = getQueries(sentence, n)
# # if len(ngrams) == 0:
# # return 0
# # matched = [x for x in ngrams if " ".join(x) in content]
# # ScoreArray[content_idx][j] = len(matched) / len(ngrams)
# # print(
# # f"Analyzed {content_idx+1} of soups (SOUP SUCCEEDED)........................"
# # )
# # return ScoreArray
# async def matchingScoreAsync(
# sentences, content, content_idx, ScoreArray, model, util
# ):
# content = removePunc(content)
# for j, sentence in enumerate(sentences):
# sentence = removePunc(sentence)
# similarity_score = sentence_similarity(sentence, content, model, util)
# ScoreArray[content_idx][j] = similarity_score
# print(
# f"Analyzed {content_idx+1} of contents (CONTENT ANALYZED)........................"
# )
# return ScoreArray
# async def parallel_analyze(soups, sentences, ScoreArray):
# tasks = []
# for i, soup in enumerate(soups):
# if soup:
# page_content = soup.text
# tasks.append(
# matchingScoreAsync(sentences, page_content, i, ScoreArray)
# )
# else:
# print(
# f"Analyzed {i+1} of soups (SOUP FAILED)........................"
# )
# ScoreArray = await asyncio.gather(*tasks, return_exceptions=True)
# return ScoreArray
# async def parallel_analyze_2(soups, sentences, ScoreArray):
# tasks = [[0] * len(ScoreArray[0]) for i in range(len(ScoreArray))]
# for i, soup in enumerate(soups):
# if soup:
# page_content = soup.text
# for j, sent in enumerate(sentences):
# print(
# f"Analyzing {i+1} of {len(soups)} soups with {j+1} of {len(sentences)} sentences........................"
# )
# tasks[i][j] = sentence_similarity(sent, page_content)
# else:
# print(
# f"Analyzed {i+1} of soups (SOUP FAILED)........................"
# )
# ScoreArray = await asyncio.gather(*tasks, return_exceptions=True)
# return ScoreArray